Malware Uncertainty Principle: an alteration of malware behavior by close observation

María José Erquiaga, Sebastián García and Carlos García Garino

Botconf 2018, Montpellier, France

Researcher, teacher, master student

MaryJo_E

Plan

- Motivation and contribution
- > Background
- > Nomad project
- > HTTPs Dataset
- > Analysis and discussion
- Conclusion and future work

Motivation

Study the **influence** of web **TLS** interceptor **proxies** for network malware analysis.

Contribution

- Creation of a network malware capture dataset.
 Goal → capture malware using TLS, SSL or port 443.
 Two scenarios with and without MITM proxy interception.
- 2. Publication of the dataset
- 3. Analysis \rightarrow malware network behavior.

Background

- TLS (Transport Layer Security)
 - Security protocol for **encrypting** information
- Malware increases and evolves
 - Is hard to understand the **behavior** and to **detect**
- **Evolution** \rightarrow **Malware uses HTTPS** (SSL, TLS).
 - Harder to detect (e.g. banking trojan, Zeus)

Nomad Project

- CISCO Systems CTA, CVUT University Prague, UNCuyo Argentina
- Goal: HTTPS Malware capture

VYSOKÉ

UČENÍ

HTTPs Malware dataset

Nomad Dataset → 150 network malware traffic captures. Different types of malware (Botnet, trojans, adware, etc)

To obtain a good HTTPs malware captures we considered:

- 1. Study the malware: checking if it is HTTPs based malware
- 2. Keep the **infection running**.

Nomad Project (Lab Infrastructure)

Fig 1. First scenario, malware traffic with MITMproxy interception

Fig 2. Second scenario, malware traffic without proxy interception

Capture methodology

- 1. Find malware binary in SSL Blacklist
 - a. Obtain it from Virus Total
- 2. Copy the binary to the server
- 3. Start the virtual machine and infect it
- 4. **Compute** the start date and the infection date and **monitoring** the machine
- 5. **Stop** the machine , **generate** output files and **publish** the capture. (twitter and blog [1])

SSL Certificate Information

Subject Common Name: localhost	
Subject:	C=GB, ST=Yorks, L=York, O=MyCompany Ltd., OU=IT, CN=localhost
Issuer Common Name:	localhost
Issuer:	C=GB, ST=Yorks, L=York, O=MyCompany Ltd., OU=IT, CN=localhost
SSL Version:	TLSv1
Fingerprint (SHA1):	2a5d840ba99228082bf70aa8ae416ffd4f868051
Status:	Blacklisted (Reason: Zeus C&C. Listing date: 2016-10-18 12.25:50

[1]https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-188-1/

Analysis

- Malware capture analysis:
 - pcap and mitm.out files
- Ports and IPs contacted by the malware, check if the connection was encrypted or not.

Fig 4 With mitmproxy interception [1]

[1] https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-188-1/ [2] https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-188-2/

[3] https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-189-2/ [4] https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-189-1/

Vawtrak (189)

Discussion I

 In some cases, the malware was not able to communicate with the Internet at all!!!

Discussion I

 In some cases, the malware was not able to communicate with the Internet at all!!!

Discussion I

1. In some cases, the malware was not able to communicate with the Internet at all!!!

 Custom protocol

 MITMProxy interception

HttpSyntaxException('Bad HTTP request line: HTTP/1.1 005',)

Discussion II

- 2. Behaviors:
 - a) Tried to reconnect continually
 - b) Seek another way to connect
 - Different ports
 - Other **servers**

Conclusion

- Some malware used a custom protocol on ports reserved for HTTPs/HTTP (443, 80, 8080).
 - \circ Blocking (MITMProxy) \rightarrow different malware behaviors.
- Malware's **behavior** can **change** \rightarrow intercepting **proxy**.
 - Proxy implementation should be carefully considered when analysing malware behavior in the network.
- **Dataset available** at stratosphere web site:
 - https://stratosphereips.org/category/dataset.html

Future work

Analyze other **features**

Malware using HTTPs \rightarrow **IoT Lab**

Thank You!

M mariajoseerquiaga@gmail.com

R^e Maria_Erquiaga2

