
Stagecraft of malicious office documents - A look
at recent campaigns

Deepen Desai

Nirmal Singh

Tarun Dewan

Deepen Desai

./whois -v

• Head of ThreatlabZ – security research

arm of Zscaler

• 14 years in field of security research

• Dell SonicWALL, iPolicy Networks

Nirmal Singh

• Advanced Threat Research

• 10 years in field of security research

• Norman

©2018 Zscaler, Inc. All rights reserved.

Agenda

• Threat Landscape & Macro malware
evolution

• Office Document footprint in
enterprise traffic

• Campaign study approach

• Look at campaigns

©2018 Zscaler, Inc. All rights reserved.

Thriving underground economy

Initial Delivery Vector (pay per click or pay per install revenue)

Exploit & Delivery Payloads (pay per install revenue)

Malware Payloads

Compromised

Websites
Malvertising Botnet

Phishing

campaigns

Exploit

Kits

Dropper

payloads

Ransomware &

Scareware

RAT &

Infostealers

Coin

Miners

In
fe

c
tio

n
 F

lo
w

©2018 Zscaler, Inc. All rights reserved.

Evolution of Macro malware

• Macro malware extremely prevalent in
early 2000s

• Microsoft disabled macros by default in
Office 2007

• Resurgence of macro malware with attacks
focusing on users

• Evasive macro malware and multi-stage
payloads

• Microsoft adds new feature in Office 2016
to block macros in high risk scenarios

©2018 Zscaler, Inc. All rights reserved.

Office Documents – Overall vs. Malicious

Enterprise transactions involving Office Documents – approx. 1 million/day

Overall Office Documents [Nov 2018] Malicious Office Documents [Nov 2018]

Typical infection lifecycle

Malspam or targeted

campaigns

Malicious Office

Documents

Invoices, Shipping labels, Bank statements

E-mails with link or attachment

Embedded macro to download and

execute malware

Social Engineering to

execute macro

MALWARE PAYLOAD

Social engineering to run macro

Encrypted or secret message

RAT / Infostealer

Ransomware

CoinMiners

NETWORK & SYSTEM

FINGERPRINTING

System analysis

ID research tools

Activity Tracking

©2018 Zscaler, Inc. All rights reserved.

Study approach

• Detailed analysis of ~1,200 malicious documents during past two years
which had very low AV detections

• Manual analysis as well as sandboxing results

• Campaign definition

• Little broad

• Looked at URLs, filenames, timeframe, vulnerability exploit used, code
obfuscation, code encryption and evasion/anti-analysis techniques used to
cluster payloads

• Focus on malicious documents usage for malware delivery

• Tools used

• oletools, sandbox for macro emulation, Ollydbg, biffview, Office 2007/2013

Campaign #1 - AppRun

• Malicious documents using Application.Run VBA method for obfuscation and

indirect function calling.

• Observed during Feb 2018 - Mar 2018 time period.

• Drops Win32.Banker.Ursnif and Win32.Banker.Emotet

• Spam email with malicious document attachment as initial infection vector.

• Sample attachment names included - Landstar_Request.doc,

Judgment_Patterson Racing.doc, Judgment_Gandhi International Shipping.doc

etc.

Campaign #1 – AppRun Variant 1

• Due to “On Error Resume Next” , there will be no error and macro code will run flawlessly.

Campaign #1 – AppRun Variant 1

• PowerShell for downloading the final payload. PowerShell code is stored in an encrypted

form.

• For decryption, it first reverse the encrypted string and then extract the substring based on

predefined values

Campaign #1 – AppRun Variant 2

• A variant with AutoClose event, garbage code, indirect calls using Application.Run VBA

method.

• Use of mshta.exe for downloading the second stage downloader

Campaign #2 - ProtectedMacro

• Malicious documents with password protected macro code and VBA form

properties to store encrypted downloader code.

• Observed this campaign starting from Jul 2017 and is still active.

• Drops Win32.Banker.ZeusPanda, Win32.Banker.Trickbot, and

Win32.Trojan.Emotet malware payloads.

• Observed three variants in this campaign.

Campaign #2 – ProtectedMacro Variant 1&2

• In the first variant, the PowerShell code parts are stored in VBA form properties like form

caption or text box

• In the second variant, the PowerShell code is encrypted and stored in VBA form TextBox.

TextBox controls are hidden by setting positional values as negative.

Campaign #2 – ProtectedMacro Variant 2

• The PowerShell code is encrypted by inserting junk characters and changing the ASCII

value.

• PowerShell code creates a batch file in %TMP% folder with name as Xvepvm.bat and run

this batch file. PowerShell code in this batch file will download the final payload.

Campaign #2 – ProtectedMacro Variant 3

• In third variant, BITSAdmin command line tool was used to download malware. Macro code

contains useless variable and loops as anti-analysis measure

• BITSAdmin command is encrypted by inserting junk uppercase characters [A-Z].

16

Campaign #2 - ProtectedMacro Variant 3

17

• It replaces the content of current document with BITSAdmin command and saves the file as

batch file in %APPDATA% folder

• However, this malicious document will not work in Microsoft Office 2007 since it is using

ActiveDocument.SaveAs2 method which is only present in Microsoft Office 2010 and above

versions [1]

Campaign #3 - LeetMX

• The campaign name LeetMX [2] is derived from the fact that the payloads involved were

using leet text encoding for the filenames.

• Observed this campaign starting from Sep 2017 to Jun 2018

• Drops Win32.Backdoor.CyberRat, Win32.Backdoor.HawkEye and

Win32.Backdoor.Cybergate malware family payloads

Leet filenames Decoded

Off1cc3k3yV4l1ds.exe
OfficcekeyValids.exe

BITD3F3nder65.exe
BITDeFendergs.exe

J4v4s0ck3t50v3r5371n5.exe
Javasocketsoversetins.exe

Fl4shR4nsstmp465.exe
FlashRansstmpags.exe

JavA46541.exe
JavAagsai.exe

Off1c3TMP2018.exe
OfficeTMP2oi8.exe

J4v4S3tups00.exe
JavaSetupsoo.exe

Campaign #3 – LeetMX Variant 1

• The first variant using BITSAdmin to download the final payload

• Uses simple ASCII value to character conversion for decrypting the BITSAdmin command

string

• For delaying the execution, uses junk loops

Campaign #3 – LeetMX Variant 2

• The second variant was using PowerShell for downloading final payload. The PowerShell

code was encrypted using XOR and 22 characters key.

Campaign #3 – LeetMX Variant 3

• In the third variant, VBScript control was used to run the downloader code. Downloader

code used "Microsoft.XMLHTTP" for downloading the final payload. Downloader code is

encrypted using junk characters

Campaign #4 - OverlayCode

• Document payloads where an encrypted PowerShell code was appended to the file itself

• Observed this campaign starting from Aug 2017 till Feb 2018

• Drops Win32.Backdoor.NetWiredRC and Win32.PWS.Lokibot family payloads

Campaign #4 – OverlayCode Variant 1

• Searches the encrypted PowerShell code using bookmark

“505442534C43344A5554574D4D31565031” upon execution.

• PowerShell code is encrypted using ASCII value substitution method

e.g. - 0x7D

e.g. - 0x70 (p)

Campaign #4 – OverlayCode Variant 2

• Second variant was an excel document which used similar file structure for embedded

PowerShell code.

• Identical method to extract the encrypted code

• Using OpenProcess and WaitForSingleObject windows APIs

Campaign #4 – OverlayCode Variant 2

• Self-Delete – RunOnce –

Campaign #4 – OverlayCode Variant 2

• No function in macro code that deletes overlay data

• Self-Deletion works even if file is just opened

• Parsed excel file in Biffview [3] and found that it has WRITEACCESS record [4]

• Junk data in WRITEACCESS record which makes excel to update the WRITEACCESS

record with username that last opened it.

Size User Name

Campaign #5 - xObjectEnum

• Macro code in the documents were using enum values from different built-in classes in

VBA objects

• We observed this campaign starting from May 2017 to Apr 2018

• These excel documents were using Italian, Polish and German invoice and VAT templates

Campaign #5 - xObjectEnum

• The code checks enum value before starting infection cycle

• This method is used to bypass the emulation tools and detect office

version

Campaign #5 - xObjectEnum

• PowerShell for downloading the final payload

• PowerShell code is obfuscated and uses sleep function

Campaign #6 - PingStatus

• The documents used Win32_PingStatus WMI class to detect sandbox

• ping to location.microsoft.com and %userdomain%

• Observed in Mar 2018 and dropping Win32.PWS.Mimikatz

Campaign #7 - Multiple embedded macros

• Malicious RTF document contains multiple embedded Excel sheets

• Observed this campaign starting from Aug 2017 to Apr 2018

• Dropped Win32.Backdoor.AgentTesla, Win32.PWS.LokiBot, Win32.Backdoor.Remcos

payloads

• Macro warning popup to enable or disable macro

31

Campaign #7 - Multiple embedded macros

• No way to stop these popups except to click on all of them or to force quit Word app

• One of the malicious RTF had 10 embedded Excel sheets

Campaign #7 - Multiple embedded macros

• Enable macro removes additional warning popups

• Macro code disables the warning popup from windows registry

Campaign #7 - Multiple embedded macros

• Usage of “\objupdate” control for embedded Excel sheet objects (OLE object)

• Triggers the macro code inside the embedded Excel sheet while the RTF document is

being loaded in the Microsoft Word application

Campaign #8 - HideInProperty

• PowerShell code hidden using built-in and custom document properties

• This campaign was prevalent from Jul 2017 to Mar 2018

• Dropping and installing Win32.Banker.Emotet

35

Campaign #8 – HideInProperty variants

• Obfuscated PowerShell command strings stored in custom properties

• Uses formatted string technique to build final PowerShell code

Campaign #9 - USR-KL

• This campaign use http UserAgent strings - USR-KL and TST-DC.

• This campaign was active from Jan 2018 to May 2018

• Dropping Win32.Backdoor.AgentTesla, Win32.Backdoor.Bladabindi

• Macro code contains junk constants values

Campaign #9 - USR-KL

• Malicious PowerShell code is hidden in document variables (in case of doc file) and excel

sheet cells

• Uses the same decryption method as mentioned in campaign #5

Use of Exploit - CVE.2017.0199

• The prevalent one was CVE.2017.0199 exploit

• In the wild starting from Apr 2017

• Observed Win32.Ransom.PEC, Win32.Banker.PandaBanker, Win32.Banker.Emotet,

payloads dropped

• Use OLE2Link object to download the HTA file that download the final payload

Use of Exploit - CVE.2017.0199

• Content type of the response is set to “application/hta”

Use of Exploit - CVE.2017.0199

• HTA script contains junk data but HTA parser will load it without any error

Use of Exploit - CVE.2017.11882

• This vulnerability is related to Microsoft Equation Editor

• Observed Win32.PWS.LokiBot and Win32.PWS.Fareit malware being dropped using these

exploits from Nov 2017 to Apr 2018

RTF file format obfuscation

• Junk data insertion in RTF header.

RTF file format obfuscation

• Random keywords were inserted in the RTF file format

Conclusion

• Simple encryption methods are used

• PowerShell is a popular choice for downloading the final payload

• New ways to detect sandbox & emulators

• Multi-stage macro codes to hide the end payload

• VBA macro vs. Vulnerability Exploits

• What Next?

