
1

© Cyber Analysis and Defense Department, Fraunhofer FKIE

@push_pnx

Code Cartographer’s Diary

2018-12-05 | Botconf, Toulouse
Daniel Plohmann

daniel.plohmann@fkie.fraunhofer.de

Steffen Enders
steffen.enders@tu-dortmund.de

Paul Hordiienko
pavlo.hordiienko@fkie.fraunhofer.de

Elmar Padilla
elmar.padilla@fkie.fraunhofer.de

2

© Cyber Analysis and Defense Department, Fraunhofer FKIE

The

Agenda

3

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Agenda

Malpedia

Project Overview

Progress

Windows API Usage

Recovery

& Analysis for

Malware Characterization

Tools: ApiScout

/ ApiVectors

Evaluation Results

Code-based

Similarity

Analysis

Tools: SMDA & MCRIT

Current

State / Results

Summary

4

© Cyber Analysis and Defense Department, Fraunhofer FKIE

5

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

Motivation

Curated
Malware

Collection

Malware
Identification

Context &
Attribution

Analysis of
Timelines

Code
Relationship

Signatures
(YARA)

Track Malware
Development

Meta
Information

Malware
Characteristics

Trends

Unpacked
Reference
Samples

Free &
Independent

Service

Vetted
Community

[1] https://malpedia.caad.fkie.fraunhofer.de
[2] https://malpedia.io

https://malpedia.caad.fkie.fraunhofer.de/
https://malpedia.io/

6

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

Context

[1] https://malpedia.caad.fkie.fraunhofer.de
[2] https://malpedia.io
[3] https://journal.cecyf.fr/ojs/index.php/cybin/article/view/17

Launched

@ Botconf

12/2017 [3]

Full paper

outlines

project

goals:

+ REST API & git repo

https://malpedia.caad.fkie.fraunhofer.de/
https://malpedia.io/
https://journal.cecyf.fr/ojs/index.php/cybin/article/view/17

7

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

Progress

[1] https://malpedia.caad.fkie.fraunhofer.de
[2] https://malpedia.io

31 October 2017 26 November 2018

Users

Contributions

Malware Families

Malware Samples

References

YARA Rules

~120 ~850

~300 2908

614 1126

1630 2989

906 2379

113 116 20 775 209 54

Want an account?
Ping me!

A HUGE
THANK YOU

TO ALL
CONTRIBUTORS!

https://malpedia.caad.fkie.fraunhofer.de/
https://malpedia.io/

8

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

Operationalizing

Malpedia

Identification

YARA

Search

/ Comparison

Label Provider (Clustering)

Contextualization

Publication

references

for

families, actors, …

QA / Regression Testing

Tools, Config

extractors, etc

[1] https://github.com/TheHive-Project/Cortex-Analyzers/tree/master/analyzers/Malpedia

https://github.com/TheHive-Project/Cortex-Analyzers/tree/master/analyzers/Malpedia

9

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

Operationalizing

Malpedia

Identification

YARA

Search

/ Comparison

Label Provider (Clustering)

Contextualization

Publication

references

for

families, actors, …

QA / Regression Testing

Tools, Config

extractors, etc

[1] https://github.com/TheHive-Project/Cortex-Analyzers/tree/master/analyzers/Malpedia

https://github.com/TheHive-Project/Cortex-Analyzers/tree/master/analyzers/Malpedia

10

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

Operationalizing

Malpedia

Identification

YARA

Search

/ Comparison

Label Provider (Clustering)

Contextualization

Publication

references

for

families, actors, …

QA / Regression Testing

Tools, Config

extractors, etc

[1] https://malpedia.caad.fkie.fraunhofer.de/api/get/yara/after/2000-01-01

Malpedia REST API

https://malpedia.caad.fkie.fraunhofer.de/api/get/yara/after/2000-01-01

11

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

Operationalizing

Malpedia

Identification

YARA

Search

/ Comparison

Label Provider (Clustering)

Contextualization

Publication

references

for

families, actors, …

QA / Regression Testing

Tools, Config

extractors, etc

[1] https://github.com/MISP/misp-galaxy/blob/master/clusters/malpedia.json

https://github.com/MISP/misp-galaxy/blob/master/clusters/malpedia.json

12

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Malware

Code Cartography -

Part I

Windows API Usage Recovery &
Analysis for Malware

Characterization

joint work with Steffen Enders, Elmar

Padilla

13

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Recovery

Motivation

„(Windows) API interactions

are

an essential cornerstone

for

effective

reverse

engineering“

14

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Recovery

Overview

Tool: ApiScout

[1]

Originally

introduced

at Botconf, December

2017

Library for

painless

(Windows) API reconstruction

in known

environments

Idea: API function

offset

bruteforcing

based

on databases

Extension: ApiVectors

Compact representation

(bit

vector) indicating

the

presence

of relevant WinAPI

functions

Enables

fast assessment

of malware‘s

potential capabilities

Allows

similarity

analysis

based

on WinAPI

usage

characteristics

[1] https://github.com/danielplohmann/apiscout

https://github.com/danielplohmann/apiscout

15

© Cyber Analysis and Defense Department, Fraunhofer FKIE

These are
pretty static offsets…
-> Build a database!

Windows API Usage

Recovery

ApiScout: Approach

16

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Recovery

ApiScout: WinAPI

Measurements

All Unique

Name Version/Build APIs DLLs APIs DLLs Address

Collisions

Win

XP NT5.1/2600 128,408 1,597 101,701 1,584 1

Win

7 NT6.1/7601 251,186 3,828 168,176 2,215 178

Win

8.1 NT6.3/9600 282,802 5,154 183,424 3,024 55,181

Win

10 NT10.0/17134 338,456 5,971 234,528 3,751 115,022

Unique 323,851 5,686

Only 4,664 APIs from 64 DLLs observed being used across 702 malware families.
Win8+: Forced ASLR!

0x10000000 / 0x180000000
Database only valid for running state :(

17

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Recovery

ApiScout

Methodology

18

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Across

702 families

(90 ignored

-> .net)

PE Imports:

From

PE Header

Import Table only

Dynamic

+ Cached:

LoadLibrary

/ GetProcAddress

ApiHashing

-> Custom

IAT

Obfuscation:

Custom

Jump

Table (Andromeda)

Offset-based

Hook

Avoidance

(Chthonic)

On-Demand

Table (Dridex)

Dynamic

Resolving

(Shifu)

Imports on Stack

/ Heap

(PIVY, Cryptowall)

XORed

Imports (Qadars)

… more

[1] https://github.com/danielplohmann/apiscout

Covered

by

ApiScout

[1]

Windows API Usage

Recovery

WinAPI

Availability

for

Static

Analysis / Methods

of API Usage

https://github.com/danielplohmann/apiscout

19

© Cyber Analysis and Defense Department, Fraunhofer FKIE

2018, 702 families

[1] https://github.com/danielplohmann/apiscout

Windows API Usage

Recovery

WinAPI

Availability

for

Static

Analysis / Methods

of API Usage

2017, 382 families

https://github.com/danielplohmann/apiscout

20

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Occurrence

frequency

per Windows API function

There

are

only

very

few

„omnipresent“

APIs

Only

48 API functions

in > 50% families

4,392 (92.52%) of API functions

<= 10% families

API compositions

are

highly

specific

per family

Indeen

good for

(identification) tools

like

ImpHash

[1]

ImpFuzzy

[2]

ApiVectors!

[1] https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
[2] http://blog.jpcert.or.jp/2017/03/malware-clustering-using-impfuzzy-and-network-analysis---impfuzzy-for-neo4j-.html

Windows API Usage

Recovery

Occurrence

Frequency

of Individual

WinAPI

Functions

https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
http://blog.jpcert.or.jp/2017/03/malware-clustering-using-impfuzzy-and-network-analysis---impfuzzy-for-neo4j-.html

21

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Define: API Context

Groups

Manually

labelled

~4.500 APIs, primary

(12) and secondary

class

(115)

System

636

Crypto

131

String

458

FileSystem

352

Execution

590

Network

387

Time

44

Memory

118

GUI

1392

Device

170

Other

127

Registry

80

Windows API Usage

Recovery

Semantic

Context

for

Windows API Functions

Kudos to Quoscient.io
for their contributions!

(Patrick Ventuzelo, Lukas Bernhard)

22

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Goal: Find an (optimal?) vector

composition

based

on this!

System

636

Crypto

131

String

458

FileSystem

352

Execution

590

Network

387

Time

44

Memory

118

GUI

1392

Device

170

Other

127

Registry

80

Windows API Usage

Recovery

Semantic

Context

for

Windows API Functions

We

wrote

a paper

on this.

Extensive description

& evaluation

23

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Define: API Context

Groups

Reduce

this

set

to 1024 WinAPIs

(~80% hierarchy, ~20% based

on domain-knowledge)

Vector yields

90% coverage

(mean) for

APIs

found

by

ApiScout

for

~600 malware

families

This

can

be

seen

as a 1024-bit vector!

Assumption:
Similar

sample, similar

vector?

Execution

229

Memory

68

System

150

FileSystem

114

String

52

Network

192

Time

22

Registry

32

GUI

27

Device

66

Crypto

48

Other

24

System

636

Crypto

131

String

458

FileSystem

352

Execution

590

Network

387

Time

44

Memory

118

GUI

1392

Device

170

Other

127

Registry

80

Windows API Usage

Recovery

WinAPI

Reference

Vector

24

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Analysis

Vector Construction

25

© Cyber Analysis and Defense Department, Fraunhofer FKIE

A42gA28KA13

CAAMA16BABAAJAECAxMAACkAAQUA7CJBCgAgUBA3

kQCBAHJSRjU^q‐*}_pb__N,__^?
A42gA28KA13

CAAMA16BABAAJAEAAxMAACkAAQUA7CJBCgAAUBA3

kQCBAHJSRjU^q‐*}_pL__N,._^?
A41BA29CA4IA9gCA9gA8Q BAAJAEAABMA3 gAAQA8 QJRCgAgUBAAHkQARCDIADDBGAqQAgCcGOIOp,f?

TeslaCrypt

2.2, 3.0, 4.2

Windows API Usage

Analysis

Comparison

of ApiVectors

v2.2 V3.0

V4.2

0.964

0.354 0.360

Example

Vectors

Base64-like encoding

(Run-Length

compressed) -

4-172 bytes

long

26

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Analysis

Evaluation of Matching

Performance

Data

set: Malpedia

(2018-05-17)

673 families, 1854 samples

Comparison

with

ImpHash, ImpFuzzy

Mean

Fingerprint

sizes:

ImpHash: 32 bytes

ImpFuzzy: 54.4 bytes

ApiVector: 74.3 bytes

ApiVector: recoverable

info

Performance @ Thresholds

T: 0.18 –

90.18% TPR, 9.45% FPR

T: 0.22 –

89.10% TPR, 4.74% FPR

T: 0.32 –

86.55% TPR, 0.99% FPR

T: 0.55 –

80.72% TPR, 0.09% FPR

27

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Analysis

Evaluation of Matching

Performance

General Challenges

to API-based

similarity

analysis

Packers

.NET / scripts

Statically

linked

code

(MSVCRT, Delphi, Go, …)

28

© Cyber Analysis and Defense Department, Fraunhofer FKIE

ApiScout

available

on GitHub

[1]

Projects using

ApiScout:

Angad

[2] by

Ankur

Tyagi, presented

@ BsidesZurich

[3]

Master of Clusters by

Andrea Garavaglia

presented

@ MISP Summit

/ hack.lu

[4]

AssemblyLine

Malpedia!

Windows API Usage

Recovery

& Analysis

How

to operationalize

this?

[1] https://github.com/danielplohmann/apiscout
[2] https://github.com/7h3rAm/angad
[3] https://bsideszh.ch/agenda/abstracts/
[4] https://2018.hack.lu/misp-summit/

https://github.com/danielplohmann/apiscout
https://github.com/7h3rAm/angad
https://bsideszh.ch/agenda/abstracts/
https://2018.hack.lu/misp-summit/

29

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Visualize

Vectors:

Hilbert Curve

to ensure

neighboring

of contexts

Execution

229

Memory

68

System

150

FileSystem

114

String

52

Network

192

Time

22

Registry

32

GUI

27

Device

66

Crypto

48

Other

24

System

636

Crypto

131

String

458

FileSystem

352

Execution

590

Network

387

Time

44

Memory

118

GUI

1392

Device

170

Other

127

Registry

80

Windows API Usage

Recovery

& Analysis

Vector Visualization

30

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Some

Examples

with

ApiVector

similarities

0.06 0.83 0.18

0.05 0.16

0.02

Windows API Usage

Recovery

& Analysis

Vector Visualization

-

ApiQR

31

© Cyber Analysis and Defense Department, Fraunhofer FKIE

[1] https://malpedia.caad.fkie.fraunhofer.de/apiqr/

APT: Lazarus

win.contopee

Windows API Usage

Recovery

& Analysis

ApiVectors

Similarity

Analysis

https://malpedia.caad.fkie.fraunhofer.de/apiqr/

32

© Cyber Analysis and Defense Department, Fraunhofer FKIE

[1] https://malpedia.caad.fkie.fraunhofer.de/apiqr/

Lazarus is

an extreme case

(also known

for

some

degree

of code-reuse

across

families)!

However, there

are

definitely

other

interesting

clusters

to explore.

Hypothesis: WinAPI

usage

patterns

seem

to be

correlating

with

code-similarity?

cross-family matches, threshold > 0.5

Windows API Usage

Recovery

& Analysis

Clusters

https://malpedia.caad.fkie.fraunhofer.de/apiqr/

33

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Malware

Code Cartography: Part II

Code-based Similarity Analysis

joint work with Paul Hordiienko, Steffen Enders, Elmar

Padilla

(Work in Progress)

34

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

Motivation

Code Similarity

Analysis

Identify

(3rd party) shared

library

code: automated

annotation

/ exclusion

from

analysis

scope

Isolate

code

that

is

immanent

to a given

code

base

/ author

Related

Work:

Kam1n0 [1] by

Stephen Ding et al.

FunctionSimSearch

[2] by

Thomas Dullien

et al.

CosaNostra

/ MalTindex

[3] by

Joxean

Koret

More…

[1] https://github.com/McGill-DMaS/Kam1n0-Community
[2] https://github.com/googleprojectzero/functionsimsearch
[3] https://github.com/joxeankoret/

https://github.com/McGill-DMaS/Kam1n0-Community
https://github.com/googleprojectzero/functionsimsearch
https://github.com/joxeankoret/

35

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

Overview

Tool: SMDA [2]

„SMDA is a minimalist

recursive disassembler

library that is optimized for accurate

Control Flow Graph (CFG) recovery from
memory dumps.”

Work

in progress

–

built

on top

of Capstone

[1], already

silently

released

on GitHub

[2]

~95% accuracy

on an internal

test data

set

(50 manually

labeled

memory

dumps

of malware

families)

Formal evaluation

underway

Tool: MCRIT

„MinHash-based

Code Relationship

Identification

Toolkit“

Work

in progress, to be

released

[1] https://github.com/aquynh/capstone
[2] https://github.com/danielplohmann/smda

https://github.com/aquynh/capstone
https://github.com/danielplohmann/smda

36

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MinHash

101

MinHashing

„Min-wise

independent permutations“

-

Locality

Sensitive Hashing

(LSH) scheme

[1]

Fast estimation

of set

similarity

(approximation

of Jaccard

similarity

coefficient)

Use

cases:

text documents

/ websites

(duplicates, plagiarism)

genome

sequencing

code

similarity! [2]

[1] “Min-wise independent permutations”. Broder et al., In: Proceedings of the 30th ACM Symposium on Theory of Computing (STOC '98), New York, NY, USA.
[2] “Binary Function Clustering using Semantic Hashes”. Jin et al., Carnegie Mellon University, 2012.

37

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MinHash

101

MinHash

procedure:

Extract

a range

of descriptive

features

(„shingles“) for

each

object

Hash

them

n times

with

different hash

functions

(e.g. different seeds)

Select

the

minimum

hash

value

for

each

of the

n groups

The

resulting

sequence

of n values

is

considered

as the

object‘s

fingerprint

Matching

fingerprints:

Given

two

fingerprints, count

the

number

of equal

fields

at same

positions

Various

optimizations:

Single-hash

XORing, Banding

or

n-key

sorting, b-bit

representation, …

Kudos to Lukas Bernhard
for the fruitful discussions!

38

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT

Simplified

example

with

a hash

function

that

maps

to a single

output

byte

(0-255)

Derive

shingles

such as Same shingles

for

all functions

Fingerprint

A: [
77,
67,
82,
73,
84,
32,
121,
97,
121,
33
]

Fingerprint

B : [
77,
99,
82,
73,
84,
45,
121,
97,
112,
33
]

Statistics:
„num_ins:33“
„num_blocks:4“
„num_calls:4“
…

Mnemonic

N-grams:
„push-mov-sub-push“
„mov-sub-push-xor“,
„sub-push-xor-push“,
…

Graphlets, …
Strings, …
Fuzzy

Abstractions, …
Fuzzy

Windowing, …

Statistics:
„num_ins:30“
„num_blocks:4“
„num_calls:4“
…

Mnemonic

N-grams:
„push-mov-sub-push“
„mov-sub-push-xor“,
„sub-push-xor-cmp“
…

Overlap: 7 / 10, Score: 0.7

39

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT

Small test data

set

(in-memory):

50 samples, 40 families

26,097 functions

with

20,611 indexable

(greater

or

equal

to 10 instructions

or

3 basic

blocks)

Application

of MCRIT

All function

pairs: 20,611 * 20,610 / 2 = 212,396,355

Filter candidates

down to 35,651 pairs

(using

„banding“)

This

results

in 19,732 matches

above

threshold

(0.7)

Indexing

+ Matching

in-memory

takes

~2min on this

laptop

(i5, 8GB RAM).

Formal validation

pending

Win/Linux

goodware

binaries

with

symbols

BinDiff

Threshold 0.90 0.99

BinDiff

Matches 12,035 8,263

MCRIT Threshold 0.70 0.85

MCRIT Matches 19,732 11,648

MCRIT TPs 9,350 7,968

MCRIT TPR 0.7769 0.9643

MCRIT FPs

(?) 3,515 766

Preliminary Results!

40

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT

Malpedia

data

set

(mongodb):

2,403 samples, 773 families

1,927,361 functions

with

1,233,321 indexable

(greater

or

equal

to 10 instructions

or

3 basic

blocks)

Application

of MCRIT

All function

pairs: 1,233,321 * 1,233,320 / 2 = 760,539,727,860

Filter candidates

down to 63,694,525 pairs

This

results

in 27,901,621 matches

above

threshold

(0.7)

-> 998,707 / 1,233,321 functions

have

a match.

Runtime

Indexing: 13,902 sec (03:51:42h) –

138,64 FNs/sec

Candidate

Identification: 6,380 sec (01:46:20h)

Matching: 31,840 sec (08:50:40h) –

1666,52 Pairs/sec

Total: 18h from

disassembly

to full

matching

results

41

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT Results

Let‘s

look

at similarity

between

families! Let‘s

try

a threshold

of…

0.2!

42

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT Results

Let‘s

look

at similarity

between

families! Let‘s

try

a threshold

of…

0.2! 0.3!

43

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT Results

Let‘s

look

at similarity

between

families! Let‘s

try

a threshold

of…

0.2! 0.3! 0.5!

44

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT Results: Function

Match Clusters

A significant

part

of these

matches

is

potentially

the

result

of common

3rd party code

How

to identify

them?

Function

Match Clusters:

A group

of samples/families, where

one

of their

function

matches

into

all the

others

Also known

as: Strongly

Connected

Component

(SCC) :)

45

© Cyber Analysis and Defense Department, Fraunhofer FKIE

XXX

families

fu
nc

tio
ns

Code-based

Similarity

Analysis

MCRIT Results: Function

Match Clusters

46

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT Results: Function

Match Clusters (logscale)

families

fu
nc

tio
ns

47

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT Results

(„Approximation“

of shared

code

clusters)

families

361,136 functions: only own family matched

316,884 functions: 2-10 families matched

320,684 functions: 11+ families matched

fu
nc

tio
ns

48

© Cyber Analysis and Defense Department, Fraunhofer FKIE

XXX

These „gaussian“ peaks are probably the result
Of varying compilers, library versions, and the

fuzziness of the approach.

Bars are actually compositions of multiple family
groups in which some dominate massively

Need to look deeper into all that…

families

fu
nc

tio
ns

Code-based

Similarity

Analysis

MCRIT Results: „Gaussian

Peaks“

49

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT Results: Filtered

Results

Let‘s

filter

out all match

clusters

with

more

than

10 families!!
And let‘s

try

a threshold

of…

0.2!

50

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT Results: Filtered

Results

/ Samples

Let‘s

filter

out all match

clusters

with

more

than

10 families

but

now

use

samples

instead!

„Most“

samples

already

cluster

nicely

into

their

families

51

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT

Next

steps

Improve

matching

quality

Turns

out, this

is

actually

not

easy. :D

Tweak

/ verify

against

multiple ground

truth

data

sets

Recognize

and filter

out known

goodware/libraries

Make

it

usable

Deployable

framework

with

some

kind

of (REST) API

Integrations

with

other

analysis

tools?

Extensive evaluation

on Malpedia

data

set

Hosted

service

along

Malpedia?

52

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Summary

53

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Summary

Code Cartographer‘s

Diary

The

Malpedia

Vision: A curated, free, high-quality

malware

corpus

for

research

Want Access?

Talk to me

(Know

Met Trust (KMT) -> ensures

K&M already)

Get

an invite

by

another

existing

member

that

can

vouch

for

you

Procedure

can

be

potentially

accelerated

based

on your

background

(GOV/LEA, …)

Windows API Usage

Recovery

& Analysis

ApiScout: Convenient

& reliable

WinAPI

usage

recovery

from

memory

dumps

ApiVectors: Compact representation, decent

matching

performance

Code-based

Similarity

Analysis

SMDA: Recursive

disassembler

(FOSS) optimized

for

memory

dumps

MCRIT: Scalable

code-based

similarity

analysis

has huge

potential

54

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Thank You for Your Attention!

@push_pnx
@malpedia

Daniel Plohmann

daniel.plohmann@fkie.fraunhofer.de

	Foliennummer 1
	The�Agenda
	Agenda�
	Foliennummer 4
	Overview�Motivation
	Overview�Context
	Overview�Progress
	Overview�Operationalizing Malpedia
	Overview�Operationalizing Malpedia
	Overview�Operationalizing Malpedia
	Overview�Operationalizing Malpedia
	Malware Code Cartography - Part I�Windows API Usage Recovery & �Analysis for Malware Characterization�joint work with Steffen Enders, Elmar Padilla
	Windows API Usage Recovery�Motivation
	Windows API Usage Recovery�Overview
	Windows API Usage Recovery�ApiScout: Approach
	Windows API Usage Recovery�ApiScout: WinAPI Measurements
	Windows API Usage Recovery�ApiScout Methodology
	Windows API Usage Recovery�WinAPI Availability for Static Analysis / Methods of API Usage
	Windows API Usage Recovery�WinAPI Availability for Static Analysis / Methods of API Usage
	Windows API Usage Recovery�Occurrence Frequency of Individual WinAPI Functions
	Windows API Usage Recovery�Semantic Context for Windows API Functions
	Windows API Usage Recovery�Semantic Context for Windows API Functions
	Windows API Usage Recovery�WinAPI Reference Vector
	Windows API Usage Analysis�Vector Construction
	Windows API Usage Analysis�Comparison of ApiVectors
	Windows API Usage Analysis�Evaluation of Matching Performance
	Windows API Usage Analysis�Evaluation of Matching Performance
	Windows API Usage Recovery & Analysis�How to operationalize this?
	Windows API Usage Recovery & Analysis�Vector Visualization
	Windows API Usage Recovery & Analysis�Vector Visualization - ApiQR
	Windows API Usage Recovery & Analysis�ApiVectors Similarity Analysis
	Windows API Usage Recovery & Analysis�Clusters
	Malware Code Cartography: Part II�Code-based Similarity Analysis�joint work with Paul Hordiienko, Steffen Enders, Elmar Padilla�(Work in Progress)
	Code-based Similarity Analysis�Motivation
	Code-based Similarity Analysis�Overview
	Code-based Similarity Analysis�MinHash 101
	Code-based Similarity Analysis�MinHash 101
	Code-based Similarity Analysis�MCRIT
	Code-based Similarity Analysis�MCRIT
	Code-based Similarity Analysis�MCRIT
	Code-based Similarity Analysis�MCRIT Results
	Code-based Similarity Analysis�MCRIT Results
	Code-based Similarity Analysis�MCRIT Results
	Code-based Similarity Analysis�MCRIT Results: Function Match Clusters
	Code-based Similarity Analysis�MCRIT Results: Function Match Clusters
	Code-based Similarity Analysis�MCRIT Results: Function Match Clusters (logscale)
	Code-based Similarity Analysis�MCRIT Results („Approximation“ of shared code clusters)
	Code-based Similarity Analysis�MCRIT Results: „Gaussian Peaks“
	Code-based Similarity Analysis�MCRIT Results: Filtered Results
	Code-based Similarity Analysis�MCRIT Results: Filtered Results / Samples
	Code-based Similarity Analysis�MCRIT
	�Summary
	Summary�Code Cartographer‘s Diary
	�Thank You for Your Attention!

