
How many Mirai variants are there?
Ya Liu (speaker)

Hui Wang

A short history

• Firstly analyzed by @MalwareMustDie in 2016-08

• Got known for crippling Krebsonsecurity, OVH, and
DYN in autumn 2016

• Source code was released on Sep 30, 2016

• Some variants were also open sourced

– e.g., MASUTA, OWARI, SORA, OMNI, …

https://twitter.com/MalwareMustDie

116 branches from +21K samples

samples: 21,108

The branch name
• An author-chosen command used in infection

– “/bin/busybox MIRAI”
– “MIRAI: applet not found”

• Later variant authors usually chose other meaningful
words

• "/bin/busybox SORA"

• "SORA: applet not found"

• "/bin/busybox JOSHO"

• "JOSHO: applet not found"

• "/bin/busybox MASUTA"

• "MASUTA: applet not found"

• "/bin/busybox daddyl33t"

• "daddyl33t: applet not found

…

Problems of branch based classification

• Not accurate: It’s common that the same branch of
samples vary a lot in features, e.g., supported attack
methods

• Confusing: Other botnet family names (e.g., zeus, QBOT,
VPNFilter) have been reused as branch names in some
variants

• Incomplete: Not all samples include branch names

We suggest to classify Mirai samples based on Mirai genes

The Mirai genes

• Encrypted configurations
– A custom database storing running parameters of CNC,

attack, scanner, killer, …

• Mirai-style attack methods
– Starting with a large instruction block where attack options

are parsed

– To be installed to a table indexed with command codes

• (Optional) Telnet credentials and IoT exploits

Outline

• Background

• Data and methodology

– Configuration

– Supported attack methods

• Detailed analysis of branch IZ1H9

• Summary

Our solution architecture

Samples

• 21,108 samples
of x86 & ARM

Extracted
data

• Configurations

• Attack methods

Schemes

• 4 classification
schemes

Data extraction model

• Static analysis

– To find target functions in sample

• Dynamic analysis

– To emulate the found functions to
obtain interested data

• Synthesis

The default Mirai config (1/2)

CNC with indexes of 3 and 4

report with indexes of 0x12 and 0x13

killer

scanner

The default Mirai config (2/2)

scanner

attack

Configuration related functions

• table_init() : to install the cipher-text items when bot
starts running

• table_unlock_val()/table_retrieve_val() /table_lock_val() :
to be consecutively called when referencing a config
item

• Items will resume to cipher-text state after using

About table_init()

cipher text is copied to a

new memory block

config DB slot is determined by

the index

index cipher-text item-sizecipher-text item-size

Binary table_init()

A function with a single and big instruction block

Repeatedly calling malloc/util_memcpy

to save individual configuration items

item size

cipher text address

slot address

Recovering indexes and key

• The initial result is an array of {item_addr, cipher-text,
size}

• Key is brute-force searched in the space of 1~256

• Indexes are calculated based on item addresses
– item_index=(item_addr-table_addr)/8

• The final result is an array of {index, plain-text, size}

Configuration example 1

branch: IZ1H9

Exploits related configuration

• 31 items in total
• No CNC
• No report server
• No HTTP agents

MD5=0407a5c2d4d2afaff91c14b63aaa668c

Configuration example 2 (1/2)

MD5=5db7c47a33bfec2574af94c0b6a50cbe

Exploits related configuration

Killer related configs

branch: IZ1H9
• No CNC and report server
• No HTTP agents
• 62 items
• more killer parameters

Configuration example 2 (2/2)

More killer related items

How to use configuration for classification?

• There is too much useful information

– E.g., item count, indexes, initialization order, item
value, keys, semantics, …

• Considerations of scalability and universality

• 2 schemes to be introduced

– Clustering samples based on config count/size

– Classification based on encryption key

Scheme-1: clustering samples based on
configuration count and size

samples: 21,108

The default Mirai configuration lies here

Size

C
o
u
n
t

Scheme-1: clustering samples based on
configuration count and size

samples: 21,108

cluster
aandy

The default Mirai configuration lies here

Size

C
o
u
n
t

Branch name Key C2 Samples

KYUBI 0x34 cnc.aandy.xyz 4

MIRAI 0x34 cnc.aandy.xyz 8

MIRAI 0x34 www.aandy.cf 7

MIRAI 0x34 www.askjasghasg.ru 16

Cluster aandy

107.179.126.64

MIRAI 0x22 cnc.ttoww.com 13

Scheme-1 on samples emerged in 2018

samples: 17,990

Size

C
o
u

n
t

The default Mirai configuration lies here

Scheme-1 on samples emerged in 2018

samples: 17,990

cluster cmdswitch

Size

C
o
u

n
t

The default Mirai configuration lies here

Cluster cmdswitch
• Samples: 63
• C2 servers: 12
• Branches: MIRAI and ORION

The item of index 0x12 points to a rep server12 unique C2 servers

~36 HTTP agents in cmdswitch samples

Scheme-2: key based classification

key

s
a
m

p
le

s

0x54

0x22

keys: 49

Scheme-2: key based classification

key

s
a
m

p
le

s

0x54

0x22

0xEA

0x37

keys: 49

Since the key space is as much as 2^8,

there should be a low probability that two

variants share the same key.

Samples of key 0x54 in scheme-1

Samples of key 0x54 in scheme-1

Cluster 1

• Samples: 9,087

• CNCs: 1,669

• first_seen: 2017-10-17

• last_seen: 2018-10-31

• Branches: 19

Configurations of cluster 1

Configurations of cluster 1

Outline

• Background

• Data and methodology
– Configuration

– Supported attack methods

• Detailed analysis of branch IZ1H9

• Summary

Supported attack methods

• It’s reasonable to classify variants of a DDoS
attacking purposed botnet family based on their
supported attack methods

• Mirai variants did vary a lot in attack methods

– 10 attack methods were found in the firstly
released code

– Dozens of new methods have been detected in
later variants

Attack method initialization

command code attack function

Static patterns of attack_init()
• It’s composed of one single instruction block

• 1, or 2 in case of inline optimization, unique functions
are repeatedly called

• Multiple callback functions, actually attack method
functions, are referenced

By exploiting the above patterns, attack_init() function
could be located in binary samples with IDAPython

Dynamic patterns of add_attack()

each method is allocated a separate item

method table
item is saved to method table

• The core is the newly allocated item
• Func-call: returned from a function

• Mem-write1: be written with {command code, attack method}

– Mem-write2: saved to a global table

Scheme-3: command code based clustering

Command code combination Samples

0_1_2_3_4_5_6_7_8_9_10 10746
0_1_2_3_4_5_6_7_9_10 3851
0_1_2_3_4_5_6_7_8 2031
0_1_2_3_4_5_6_7_8_9 806
0_1_2_3_6_7_8 670
0_1_2_3_4_5_6_7 250
1 247
0_1_2_3_4_5_6_7_9_10_11 200
1_2_3 157
0_1_2_3_4 125

Same code, different method

Mirai.1st Owari

Same code, different method

Mirai.1st Omni

Fingerprinting attack functions

• To figure out extracted attack functions’ real semantics

– E.g., SYN-/UDP-/HTTP-flood

• It’s inspired by the following 2 findings:

– A set of attack options, together with command codes,

were defined to deliver attack parameters

– Option sets are unique to different attack functions

Mirai-style attack functions

All start with a big instruction block

MD5=652ba82411b745e5dac44cd15e314b25

Attack option parsing

different functions,

different option sets

Fingerprinting definition

FP(atk_app_http)=0x15_0x14_0x08_0x16_0x18_0x07

• FP(atk_func)={concatenation of option codes}

Summary of attack fingerprints

• In total 82 unique fingerprints have been found

– Most of them are shared across variants

• Maps of {FP, atk_type} could be established by manual RE
or using symbols from unstripped samples

Scheme-4: attack type based classification

• A variant is defined as the coded attack types

– E.g., {0-atk_udp1, 1-atk_udp_vse1, 2-atk_tcp_syn1, …}

• Information of method count, command codes, and
attack types is fully exploited

• In total 206 unique combinations have been found

– In other word, there are 206 variants under scheme-4

Cluster aandy and cmdswitch in scheme-4

• Cluster aandy and cmdswitch belong to the same variant
– [0-udp1, 1-udp_vse1, 10-http1, 2-udp_dns, 3-tcp_syn1, 4-tcp_ack1,

5-tcp_stomp_or_xmas1, 6-gre1, 7-gre1, 9-std_or_udp]

Outline

• Background

• Data and methodology

• Detailed analysis of branch IZ1H9

• Summary

Summary of IZ1H9

• Samples: 709

• First_seen: 2018-08-09

• Last_seen: 2018-10-31

• CNCs: 96

Samples CNC

143 185.244.25.176

27 145.239.117.244

26 128.199.222.37

20 xnx.mariokartayy.com

20 205.185.113.79

18 185.10.68.127

18 128.199.175.181

15 178.62.45.105

15 178.128.150.223

15 176.32.33.155

IZ1H9 samples under scheme-1

453 samples

IZ1H9 samples under scheme-2

• 3 keys were found

Variant Samples CNCs

IZ1H9+0xEA 579 92

IZ1H9+0x22 90 6

IZ1H9+0x3D 9 3

26 variants under scheme-4

Samples Combination of command code and method name

405 [0-atk_udp_or_gre2, 1-atk_udp_vse1, 2-atk_udp_dns, 3-atk_tcp_syn5,
4-atk_tcp_ack2, 5-atk_tcp_stomp_or_xmas2, 6-atk_gre2, 7-atk_gre2,
8-atk_std_or_udp]

90 [0-atk_udp1, 1-atk_udp_vse1, 10-atk_http1, 11-atk_cf, 2-atk_udp_dns, 3-
atk_tcp_syn1, 4-atk_tcp_ack1, 5-atk_tcp_stomp_or_xmas1, 6-atk_gre1,
7-atk_gre1, 9-atk_std_or_udp]

47 [1-atk_tcp_syn1, 2-atk_std_or_udp, 3-atk_std_or_udp, 4-atk_udp_dns]

37 [0-atk_tcp_syn1, 1-atk_tcp_syn1, 2-atk_tcp_syn1, 3-atk_tcp_syn1,
4-atk_tcp_syn1, 5-atk_tcp_syn1, 6-atk_udp_vse1, 7-atk_std_or_udp, 8-atk_gre1,
9-atk_std_or_udp]

Summary

• Current branch name based classification is not enough to
deal with the Mirai variant explosion problem

• Ideas of variant classification based on Mirai configuration
and attack methods are introduced

– Data extraction method

– 4 schemes based on the extracted data

• Samples of the IZ1H9 branch were investigated under the
proposed data and schemes

Thank you

