
1

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Daniel Plohmann, Manuel Blatt, and Daniel Enders | 2023-04-13

MCRIT: The

MinHash-based

Code Relationship

&
Investigation Toolkit

2

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Introduction

$whoami



Security

Researcher

@ Fraunhofer FKIE & University of Bonn



Research Scope:



Analysis of malicious

software

(malware) / reverse

engineering

/ analysis

automation



Past

Appearences

at Botconf:


Laura Guevara, Daniel Plohmann

2014 -

Semantic

Exploration of Binaries


Daniel Plohmann

2015 -

DGArchive: A deep

dive

into

domain

generating

algorithms


Daniel Plohmann, Martin Clauß, Steffen Enders, Elmar Padilla

2017 -

Malpedia: A Collaborative

Effort

to Inventorize

the

Malware Landscape



Daniel Plohmann, Steffen Enders, Elmar Padilla

2018 -

Code Cartographer‘s

Diary



Felix Bilstein, Daniel Plohmann

2019 -

YARA-Signator: Automated

Generation of Code-based

YARA Rules

3

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Outline



Motivation



MCRIT: System Overview



Methodology



Framework



Use

Cases



Outlook

4

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Motivation

5

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Motivation

[1] https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
[2] https://twitter.com/neelmehta/status/864164081116225536



Infamous

WannaCry



Ransomware

attack

using

wormable

exploit

(EternalBlue)



Attack

started

on May 12th 2017



230k affected

systems

in ~8 hours



Quickly

disrupted

due

to a
lucky

registration

of killswitch

domain



Impact



UK NHS disrupted

(£100m damage)



Nissan, Renault, Telefonica, FedEx, DB, …



Attack

Attribution?

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://twitter.com/neelmehta/status/864164081116225536

6

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Unique across all of Malpedia

[1] https://twitter.com/neelmehta/status/864164081116225536

Motivation

https://twitter.com/neelmehta/status/864164081116225536

7

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Motivation



Code Similarity

Analysis



High potential to help

analysts

and accelerate

analysis



Code identification, library

filtering, hunting, label

transfer, …



Existing

solutions

mostly

limited

to



1:1 comparison



Proprietary



Let‘s

see

what

we

can

do. :)

8

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

System Overview

9

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

Design



Goal: Analyze

code

sharing

and third-party

library

usage

in malware



Create

tools

to leverage

Malpedia

binary

corpus



Don‘t

reinvent

the

wheel: reuse

of proven

techniques

as described

in literature



Requirements:



Similarity: reliable, interpretable

estimate



Scalability: (tens

of) millions

of functions



Efficient

representation: (significantly) smaller

than

indexed

code



No cross-bitness

or

cross-architecture

(Malpedia

at the

time was 95% 32bit Intel)

10

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code Recovery

and Similarity

Analysis

MCRIT: Approach



Initial Observations



Haq

et al. [1] survey:

50+ works

on code

similarity

since

2010



Only

17 with

10+ malware

samples



Only

1 analyzed

FOSS usage

in malware

(Alrabaee

et al. [2])



MCRIT



Combines

quasi-identical

and fuzzy

code

representation



Block & Function-level

similarity



Efficient

1:n matching

via



Hashmaps



Locality-Sensitive

Hashing

(LSH)

PicHash MinHash

quasi-identical
representation

fuzzy
representation

disassembly

[1] I. U. Haq and J. Caballero, “A survey of binary code similarity," In: Arxiv.org Computers & Security, 2019.
[2] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, “FOSSIL: A Resilient and Efficient System for Identifying FOSS Functions in Malware Binaries," In: ACM Trans. Priv. Secur., vol. 21, 2018.

wildcarding
of addresses

token- and
metrics-based features

Minhash-based Code Relationship & Investigation Toolkit (MCRIT)

Project Co-Authors: Paul Hordiienko, Steffen Enders, Manuel Blatt, Daniel Enders

11

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

PIC Hashing


Quasi-Identical: Position Independent Code (PIC) Hashing



On function

level

(original method

as introduced

by

Cohen and Havrilla

[1])



On basic

block level

(more

granularity, almost

the

same

speed)

pichash(„55 8BEC 81EC34010000 …“)

pichash(„55 8BEC 81EC1C010000 …“)



Good for

recognizing

statically

linked

code

(often

binary

identical)

-> 8806641384121875405

-> 10270976525648996728

[1] C. Cohen and J. Havrilla, “Function Hashing for Malicious Code Analysis“, tech. rep., SEI, CMU, 2009.

12

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

PIC Hashing


Quasi-Identical: Position Independent Code (PIC) Hashing



On function

level

(original method

as introduced

by

Cohen and Havrilla

[1])



On basic

block level, size

4+

(more

granularity, almost

the

same

speed)

pichash(„55 8BEC 81EC34010000 …“)



Good for

recognizing

partial code

reuse

(candidates)

-> 620962970

pichash(„55 8BEC 81EC1C010000 …“)

-> 2827249019

pichash(„8D85CCFEFFFF 50 E8?? …“)

-> 847901973

pichash(„FF35???????? E8???? …“)

-> 463987246

pichash(„8D85E4FEFFFF 50 E8?? …“)

-> 640583737

pichash(„FF35???????? E8???? …“)

-> 463987246

[1] C. Cohen and J. Havrilla, “Function Hashing for Malicious Code Analysis“, tech. rep., SEI, CMU, 2009.

13

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

MinHash

101



MinHashing



„Min-wise

independent permutations“

-

Locality

Sensitive Hashing

(LSH) scheme

[1]



Fast estimation

of set

similarity

-> approximation

of Jaccard

similarity

coefficient



Scalability: O(log

n) for

single

lookups



Use

cases:



text documents

/ websites

(duplicates, plagiarism)



genome

sequencing



code

similarity! [2]

[1] “Min-wise independent permutations”. Broder et al., In: Proceedings of the 30th ACM Symposium on Theory of Computing (STOC '98), New York, NY, USA.
[2] “Binary Function Clustering using Semantic Hashes”. Jin et al., Carnegie Mellon University, 2012.
[3] https://www.learndatasci.com/glossary/jaccard-similarity/

https://www.learndatasci.com/glossary/jaccard-similarity/

14

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

MinHash

Composition



Token-based

features:



Instruction

3-grams



Abstract semantically



Convert

to 3-perms (sorted)



Metrics-based

features:



Numerically

describe

structure

of a function



Normalize

& Quantize

for

fuzzy

matching



MinHash

matching:



Count

same

values

in same

position

109 23 12 112 51 176 105 65 124 17 82 48 99 75 115 3312/16 = 75%

15

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

MinHash

Composition



Token-based

features:



Instruction

3-grams



Abstract semantically



Convert

to 3-perms (sorted)



Metrics-based

features:



Numerically

describe

structure

of a function



Normalize

& Quantize

for

fuzzy

matching



Candidate

Identification:



Additionally

index

subsequences

from

signatures

into

buckets

109 23 12 112 51 176 105 65 124 17 82 48 99 75 115 3312/16 = 75%
BAND-ENTRYBAND-ENTRY BAND-ENTRY BAND-ENTRY

16

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

MinHash

Feature Engineering

Full details in my PhD thesis

[1] „Classification, Characterization, and Contextualization of Windows Malware using Static Behavior and Similarity Analysis“, D. Plohmann, 2022.

17

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

Querying

the

System



Query with



Basic Block



Function



Sample

For every function, we know how many families we match.
1. We can use this to weigh by occurrence frequency

when aggregating to sample matches.
2. We can identify unique matches into just one family

and use this as further indication for identity.

[1] eff542ac8e37db48821cb4e5a7d95c044fff27557763de3a891b40ebeb52cc55 @ 0x406770 | win.romeos |

18

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

Setup



Database



MCRIT Server



Core

of the

system



Enable

access

to stored

content

(API)



Create

matching

jobs



MCRIT Workers



Process

jobs

from

the

queue



MCRIT Web



Expose service

functionality

in a user

interface



User management



API forwarding

to MCRIT server

Database

MCRIT
Server

MCRIT
Workers

MCRIT
Web

Docker-Compose

https://github.com/danielplohmann/docker-mcrit

https://github.com/danielplohmann/docker-mcrit

19

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

Setup

Database

MCRIT
Server

MCRIT
Workers

MCRIT
Web

Docker-Compose

Interaction

MCRIT
Client

Browser

IDA

CLI

https://github.com/danielplohmann/docker-mcrit

https://github.com/danielplohmann/docker-mcrit

20

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

Setup: WebUI

21

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

Setup: WebUI

22

© Cyber Analysis and Defense Department, Fraunhofer FKIE

MCRIT

Setup: WebUI

23

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Use Cases

24

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Example

Use

Cases



Malware family

identification

and library

code

differentiation



Isolation of unique

family

code



Lead

generation

for

discovering

potentially

unknown

links



Label Transfer

25

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Example

Use

Cases

Malware Family

Identification

and Library Code Differentiation

[1] https://www.bleepingcomputer.com/news/security/lockbit-ransomware-goes-green-uses-new-conti-based-encryptor/
[2] lockbit green: 45c317200e27e5c5692c59d06768ca2e7eeb446d6d495084f414d0f261f75315

45c317_lockbit_green.exe

Disassembly + Matching: 35sec

https://www.bleepingcomputer.com/news/security/lockbit-ransomware-goes-green-uses-new-conti-based-encryptor/

26

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Nutzungsaspekte

Codeähnlichkeitsanalysen: Identifikation

27

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Nutzungsaspekte

Codeähnlichkeitsanalysen: Identifikation

28

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Nutzungsaspekte

Codeähnlichkeitsanalysen: Identifikation

Code from standard libraries (MSVCRT, …)

29

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Nutzungsaspekte

Codeähnlichkeitsanalysen: Identifikation

Intrinsic Code

30

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Nutzungsaspekte

Codeähnlichkeitsanalysen: Identifikation
lockbit green
@0x401730

conti
@0x10017a0

[1] conti: a5751a46768149c5ddf318fd75afc66b3db28a5b76254ee0d6ae27b21712e266

31

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Example

Use

Cases

Isolation of Unique

Family

Code



Essentially

like

YARA-Signator,
but

with

basic

blocks

YARA Rule

Family A

YARA Rule

Family B

YARA Rule

Family C

YARA Rule

Family D

32

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Example

Use

Cases

Isolation of Unique

Family

Code



Essentially

like

YARA-Signator,
but

with

basic

blocks

YARA Rule

Family A

YARA Rule

Family A

YARA Rule

Family A

YARA Rule

Family D

33

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Example

Use

Cases

Isolation of Unique

Family

Code



Essentially

like

YARA-Signator,
but

with

basic

blocks

YARA Rule

Family A

YARA Rule

Family A

YARA Rule

Family A

YARA Rule

Family D

34

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Example

Use

Cases

Lead

Generation for

Discovering

Potentially

Unknown

Links



May 15th 2017 -

Tweet

by

Neel

Mehta

(Google) with

hashes

+ offsets



Earlier

version

of WannaCry

sharing

„rare“

code

with

Contopee



Identification

of similar

functions

with

appearance

across

few

families



Potential reuse

of non-public

code

as an indicator

for

relationship

[1] https://twitter.com/neelmehta/status/864164081116225536
[2] „Classification, Characterization, and Contextualization of Windows Malware using Static Behavior and Similarity Analysis“, D. Plohmann, 2022.

https://twitter.com/neelmehta/status/864164081116225536

35

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Example

Use

Cases

Lead

Generation for

Discovering

Potentially

Unknown

Links

36

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Example

Use

Cases

Label Transfer

37

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Summary

38

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Limitations

Minhash-based

Code Relationship

& Investigation Toolkit

(MCRIT)



Version released

today

is

a first

version



Fully

functional, but

needs

some

usability

improvements



Data

exchange



Basic import

/ export, looking

to improve

reference

data

distribution



Architecture

support



x86/x64 only, not

optimized

for

cross-bitness



Matching

/ Search



Currently

only

PicHash

and MinHash, may

add

further

options

(WinAPI, strings, PE/ELF meta

data, …)

[1] https://github.com/danielplohmann/docker-mcrit

https://github.com/danielplohmann/docker-mcrit

39

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Summary

Minhash-based

Code Relationship

& Investigation Toolkit

(MCRIT)



MCRIT



A framework

for

quasi-identical

and fuzzy

1:n code

matching



Variety

of Use

Cases



Code identification

& library

filtering, hunting, label

transfer, …



Full Open Source

Release



Convenient

deployment

via Docker [1]

[1] https://github.com/danielplohmann/docker-mcrit

https://github.com/danielplohmann/docker-mcrit

40

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Thank you for your attention!

Dr. Daniel Plohmann

daniel.plohmann@fkie.fraunhofer.de

@push_pnx

	Foliennummer 1
	Introduction�$whoami
	Outline
	 �Motivation�
	Motivation
	Foliennummer 6
	Motivation
	 �MCRIT�System Overview�
	MCRIT�Design
	Code Recovery and Similarity Analysis�MCRIT: Approach
	MCRIT�PIC Hashing
	MCRIT�PIC Hashing
	MCRIT�MinHash 101
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	MCRIT�Setup: WebUI
	MCRIT�Setup: WebUI
	MCRIT�Setup: WebUI
	 �Use Cases�
	Example Use Cases
	Example Use Cases�Malware Family Identification and Library Code Differentiation
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Example Use Cases�Isolation of Unique Family Code
	Example Use Cases�Isolation of Unique Family Code
	Example Use Cases�Isolation of Unique Family Code
	Example Use Cases�Lead Generation for Discovering Potentially Unknown Links
	Example Use Cases�Lead Generation for Discovering Potentially Unknown Links
	Example Use Cases�Label Transfer
	 �Summary
	Limitations�Minhash-based Code Relationship & Investigation Toolkit (MCRIT)
	Summary�Minhash-based Code Relationship & Investigation Toolkit (MCRIT)
	�Thank you for your attention!

