
Using systematic code reuse analysis
to create robust YARA rules

www.threatray.com

Page/ 2

Agenda

● Introduction and goals

● YARA rules based on code

● Code search engine: Finding code reuse at scale

● Exercises: Building a YARA rule creation pipeline

Page/ 3

Speakers

● Carlos Rubio Ricote

● David Pastor Sanz

● Jonas Wagner

Page/ 4

How to get started with the hands-on exercises

● The ZIP file from the email contains everything you need for the workshop.

● You need: Linux (ideally Ubuntu) environment and a Docker (+docker-compose) installation.

○ We’re working with malware, so ideally choose an isolated VM.

○ Minimum specs: 4 vCPUs, 8 GB RAM.

● Unzip the ZIP file and open a terminal into the folder extracted. If you don’t have docker installed, then run

bash install.sh -i -p (it will install and prepare docker for you).

● Run bash install.sh -d go to your browser and open the following page:

http://0.0.0.0:9999/notebooks/Indices.ipynb

http://0.0.0.0:9999/notebooks/Indices.ipynb

Introduction and goals

Page/ 6

YARA

● YARA is a standard for detection and identification of malware attacks.

● “Easy to learn, hard to master”, needs expert knowledge and possibly time-consuming validation.

● Often done manually, but lots of opportunities to automate or support the process.

● Roughly two types of rules, based on text strings or based on bytes.

https://www.botconf.eu/wp-content/uploads/2019/12/B2019-Bilstein-Plohmann-YaraSignator.pdf

https://www.botconf.eu/wp-content/uploads/2019/12/B2019-Bilstein-Plohmann-YaraSignator.pdf

Page/ 7

Goals of this workshop

● Get some background and motivation on YARA rules based on code.

● Understand how to get from binary code to a YARA rule.

● Understand how code search engines work.

● Build an automated YARA rule creation pipeline with code search engines and YARA rule creation tooling.

● Use the pipeline to automatically create code-based YARA rules for a set of malware families.

Page/ 8

Hands-on exercises during the workshop

● Get to know code search engine using Binlex.

● Get to know code search engine using FunctionSimSearch.

● Building the pipeline using Binlex, FunctionSimSearch and mkYARA.

● Use the pipeline and create rules for malware families.

YARA rules based on code

Page/ 10

Code-based YARA rules (for identification)

● Robustness and longevity of code

● Uniqueness

● Automation and pre-validation

● But…

Page/ 11

Longevity of code - Qbot

Page/ 12

Longevity of code - Qbot

Page/ 13

What makes a good code-based rule?

● Unique code: Selected code is unique / identifying for a family. Exclude goodware code.

● Normalized code: Independent of position / relocations / operands.

● Rule condition: Certain broadness / resilience to changes in malware code, not too rigid.

Page/ 14

Finding unique code

● Identify relevant code reuse between lots of binaries.

○ Exclude goodware code.

○ Exclude “forks” of the malware family.

● We will handle this with a code search engine, it allows us to:

○ Create “code-based” signatures first, then transform them into YARA rules.

○ Pre-validation of signatures.

○ Scale to >thousands binaries.

Page/ 15

Normalized code

55 push ebp
8BEC mov ebp, esp
B858160000 mov eax, 0x1658
E88F050000 call 0x59c
53 ush ebx
56 push esi
FF7510 push dword ptr [ebp + 0x10]
8D85D8F5FFFF lea eax, [ebp - 0xa28]
50 push eax
8B4514 mov eax, dword ptr [ebp + 0x14]
E888B2FFFF call 0xffffb2a9
8D4704 lea eax, [edi + 4]
50 push eax
8D85F0FBFFFF lea eax, [ebp - 0x410]
50 push eax
B800020000 mov eax, 0x200
E873B2FFFF call 0xffffb2a9
8D8704060000 lea eax, [edi + 0x604]
50 push eax
8D85E8F9FFFF lea eax, [ebp - 0x618]

55
8B EC
B8 58 16 00 00
E8 ?? ?? ?? ??
53
56
FF 75 ??
8D 85 ?? ?? ?? ??
50
8B 45 ??
E8 ?? ?? ?? ??
8D 47 ??
50
8D 85 ?? ?? ?? ??
50
B8 00 02 00 00
E8 ?? ?? ?? ??
8D 87 ?? ?? ?? ??
50

Page/ 16

Normalized code with mkYARA

https://github.com/fox-it/mkYARA

https://github.com/fox-it/mkYARA

Page/ 17

Rule condition

● We want a certain broadness and resilience to changes in code.

○ This means we need to add more than just a few functions or basic blocks to the rule.

○ … and have a flexible rule condition, say a 20% “threshold” -> automation.

● From our experience in studying code reuse at scale over 1000+ malware families: even small overlaps of

10-20% are enough for high quality identification.

Code search engine
Finding code reuse at scale

Page/ 19

Code search engine - What is it?

Match?

abc.exe 91%
contract.exe 73%
…

Page/ 20

Finding code reuse at scale

Page/ 21

Code-based signatures

Page/ 22

Threatray Demo

● Code-based signatures

● Native retro-hunting

● Binary OSINT

Page/ 23

Requirements

● Granularity: Need to have a fine granularity of finding code reuse, either function or sub-function level.

● Accuracy: Need a high quality code similarity metric to spot code reuse.

● Scale: Need to look at dozens to hundreds of binaries of a malware family, at the same time.

Page/ 24

Requirements

Granularity Accuracy Scale

ssdeep

Bindiff

Code search engine

Page/ 25

Architecture of a code search engine

Page/ 26

Architecture of a code search engine

Page/ 27

The core parts of a code search engine

● Search granularity

● Code similarity metric

● Distance preserving transformation

Page/ 28

Search granularity

● Binary

○ Suitable for retro-hunting, binary OSINT.

● Function

○ Isolated piece of code with semantic value.

○ Reuse is largely triggered by developers.

● Basic block

○ Smallest unit of code with semantic value.

○ Reuse is largely triggered by compilers.

Page/ 29

Code similarity metric

https://evil.com/api17.php
b60f ff55 458b 8d08
00e2 b60f 1104 b60f
01ba 0000 d100 0fe2
b60f fe55 e852 fe96

https://evil.com/api28.php

b332 ff55 458b 8d08
00e2 b60f f099 b60f
01ba 9999 d100 ab2d
b60f 55fe e852 fe96

 ≃ ?

Page/ 30

● Semantic vs. syntactic code similarity.

● Resilient against differences in code generation:

○ Position dependence

○ Compiler versions

○ Compiler optimization levels

○ Word size (32/64-bit)

○ CPU architectures

● Resilience against minor differences in source code (=approximate semantic similarity).

What is a good code similarity metric?

Page/ 31

● Basic block -> normalized code

○ BinLex calls them “traits”.

Instruction sequence similarity

55 push ebp
8BEC mov ebp, esp
B858160000 mov eax, 0x1658
E88F050000 call 0x59c
53 ush ebx
56 push esi
FF7510 push dword ptr [ebp + 0x10]
8D85D8F5FFFF lea eax, [ebp - 0xa28]
50 push eax
8B4514 mov eax, dword ptr [ebp +
0x14]
E888B2FFFF call 0xffffb2a9
8D4704 lea eax, [edi + 4]
50 push eax
8D85F0FBFFFF lea eax, [ebp - 0x410]
50 push eax
B800020000 mov eax, 0x200
E873B2FFFF call 0xffffb2a9
8D8704060000 lea eax, [edi + 0x604]
50 push eax
8D85E8F9FFFF lea eax, [ebp - 0x618]

55
8B EC
B8 58 16 00 00
E8 ?? ?? ?? ??
53
56
FF 75 ??
8D 85 ?? ?? ?? ??
50
8B 45 ??
E8 ?? ?? ?? ??
8D 47 ??
50
8D 85 ?? ?? ?? ??
50
B8 00 02 00 00
E8 ?? ?? ?? ??
8D 87 ?? ?? ?? ??
50

● Pros

○ Simple and explainable approach.

○ Fine-grained similarity metric.

● Cons

○ Weak towards even minor changes in code generation.

○ Requires lots of data per function, which makes it harder to scale.

Page/ 32

Control flow graph similarity

● Related to the graph isomorphism problem, which is hard to solve.

● Similarity is matching basic blocks from graph A to graph B.

● Pros

○ Good resilience towards code generation changes.

○ Can be made to scale to 100M+ functions.

● Cons

○ Quality depends a lot on feature extraction process.

○ Usually no “sub-function” similarity.

Page/ 33

Distance preserving transformation

● We need to be able to compare code efficiently at scale.

○ Instruction sequence similarity -> explosion of storage.

○ Control flow graph similarity -> CPU-intensive.

● The solution is to have a distance preserving transformation.

● The goal is to be compute the similarity of the representation

after transformation, with the properties of:

○ Similarity is easy to compute.

○ Similarity in representation = similarity in actual code.

● This is usually locality-sensitive hashing (fuzzy hashing) or

embedding into low-dimensional vector spaces.

Page/ 34

SimHash for functions

Page/ 35

From control flow graph features to SimHash

● We need to extract features that adhere to the requirements outlined before, e.g. resilient against

changes in code generation.

● FunctionSimSearch uses three types of features that achieve this:

○ Subgraphs of the control flow graph.

○ N-grams from mnemonics of the instruction sequence.

○ Constants from the function.

Page/ 36

Subgraphs

Page/ 37

n-grams of mnemonics

Page/ 38

Constants from the instruction sequence

● Certain constants are often unchanged by the compiler and thus are relevant identifiers for code reuse.

● FunctionSimSearch only considers constants that are:

○ greater than 0x4000

OR

○ divisible by 4 and greater than 10

● With the idea of removing stack offsets, which aren’t good features.

Page/ 39

SimHash for functions

Page/ 40

Building a code search engine

Page/ 41

Building a code search engine

Page/ 42

Building a code search engine

Page/ 43

Example 1 - BinLex

● Preprocessing: Disassemble with capstone.

● Feature extraction: Extract normalized instruction sequences (=“traits”).

● Transformation: Apply cryptographic hash to traits.

● Indexing: Lookup that maps trait hashes to traits, no similarity metric.

● Search: Index lookup on input traits IDs (=hash), return metadata.

Page/ 44

Example 2 - FunctionSimSearch

● Preprocessing: Disassemble with dyninst.

● Feature extraction: Extract subgraphs, n-grams and constants from control flow graphs of

functions.

● Transformation: Apply SimHash to extracted features.

● Indexing: Partition SimHashes into buckets of inverted indices.

● Search: Input function (=SimHash) is matched through the index and returns matching functions

and metadata.

Building a YARA rule creation
pipeline

Page/ 46

YARA rule creation pipeline

