
Writing Config Extractors
Navigating the challenges in extracting malware artifacts

 © Intel 471 Inc. 2024 1Botconf 2024

About Us

 © Intel 471 Inc. 2024

Souhail Hammou
Souhail is a senior malware reverse engineer with the Intel
471 Malware Intelligence team. He’s actively involved in
reverse engineering malware and developing tools such as
extractors and network protocol emulators to track
malware and botnet activities.

2

Miroslav Stampar, PhD
Miroslav is a senior security engineer with the Intel 471
Malware Intelligence team. He's actively involved in lots of
“miscellaneous” stuff.

 © Intel 471 Inc. 2024

Agenda

3

● Introduction

● Lab setup - TLP:AMBER+STRICT

● Part I General methodologies - TLP:AMBER+STRICT

● Part II Regular expressions for code: RisePro hands-on - TLP:GREEN

● Part III Using Unicorn and Capstone: Emotet hands-on - TLP:GREEN

● Conclusion and Appendices - TLP:GREEN

 © Intel 471 Inc. 2024

● A malware’s configuration is one of its most valuable assets.

● Samples typically come with a static configuration, sometimes minimal, that is set by the

operator(s) before distribution.

○ Not expected to change unless explicitly updated or extended remotely.

● A malware config holds:

○ Command-and-Control (C2) servers.

○ Encryption keys and other configuration parameters.

Introduction

4

 © Intel 471 Inc. 2024

● Being able to extract elements of a malware’s config allows defenders to:

○ Publish IOCs.

○ Emulate the malware’s communications protocol (more IOCs).

○ Thwart or deeply inconvenience malware operators.

● For that reason, malware developers will:

○ Use obfuscation/encryption to conceal the config.

○ React to OSINT articles and config extractor scripts.

Introduction

5

 © Intel 471 Inc. 2024

Lab setup

N/A in TLP:WHITE

6

 © Intel 471 Inc. 2024

Part I - General methodologies

7

N/A in TLP:WHITE

 © Intel 471 Inc. 2024

Part II - Regular expressions for code

● When and why you need to use regular expressions?

● Limitations of using regex to match code.

● Introducing Coderex.

● 2 Hands-on tasks.

8

 © Intel 471 Inc. 2024

Regular expressions

● Sooner or later you will need to locate code in malware samples.

● For example:

○ To defeat encrypted stack strings.

○ To extract constants in the code.

○ To emulate instructions.

Encrypted Stack Strings (RisePro)

Backconnect C2 TCP Port (Socks5SystemZ)

9

 © Intel 471 Inc. 2024

Why regex?

● Alternation operator:

rb’\x75.|\x0F\x85….’ # jnz short OR jnz near

● Ranges:

rb‘[\x50-\x57]’ # PUSH r32

● Wildcard opcodes using a ‘.’ operator

re.compile(rb’\xB0.\xC3’, re.DOTALL) # MOV AL, XXh + RETN

10

 © Intel 471 Inc. 2024

Why regex?

● Wildcard an arbitrary number of instructions:

rb‘.{0,120}?’ # Lazy match between 0 and 120 bytes of code

● Groups allow capturing data, especially at arbitrary offsets in dynamic buffers:

rb‘\xE8.{8,128}?\x68(?P<tcp_port>..\x00\x00).{1,6}?\xE8’ # PUSH tcp_port

8 to 128 bytes 68 (?? ?? 00 00) push (tcp_port) 1 to 6 bytes E8 CALLE8 CALL

11

 © Intel 471 Inc. 2024

Lazy mode

● Consume pattern as few times as possible and expand to yield the shortest match.

.{8,64}?\xE8

● Allows to retrieve the first occurrence in code.

● In most cases you’ll want to use lazy quantifiers when wildcarding a range of bytes.

12

 © Intel 471 Inc. 2024

Lazy mode

rb‘\xE8.{8,128}?\x68(?P<tcp_port>..\x00\x00).{1,6}?\xE8’

E8 FB FF FF 00 call 0x1000000
8D 4A 20 lea ecx, [edx+0x20]
8B 41 04 mov eax,DWORD PTR [ecx+0x4]
56 push esi
8B 31 mov esi,DWORD PTR [ecx]
68 BB 01 00 00 push 0x1bb
68 01 00 00 00 push 0x1
56 push esi
E8 call

13

 © Intel 471 Inc. 2024

rb‘\xE8.{8,128}?\x68(?P<tcp_port>..\x00\x00).{1,6}?\xE8’

E8 FB FF FF 00 call 0x1000000
8D 4A 20 lea ecx, [edx+0x20]
8B 41 04 mov eax,DWORD PTR [ecx+0x4]
56 push esi
8B 31 mov esi,DWORD PTR [ecx]
68 BB 01 00 00 push 0x1bb
68 01 00 00 00 push 0x1
56 push esi
E8 call

Lazy mode

14

 © Intel 471 Inc. 2024

rb‘\xE8.{8,128}?\x68(?P<tcp_port>..\x00\x00).{1,6}?\xE8’

E8 FB FF FF 00 call 0x1000000
8D 4A 20 lea ecx, [edx+0x20]
8B 41 04 mov eax,DWORD PTR [ecx+0x4]
56 push esi
8B 31 mov esi,DWORD PTR [ecx]
68 BB 01 00 00 push 0x1bb
68 01 00 00 00 push 0x1
56 push esi
E8 call

Lazy mode

15

 © Intel 471 Inc. 2024

rb‘\xE8.{8,128}?\x68(?P<tcp_port>..\x00\x00).{1,6}?\xE8’

E8 FB FF FF 00 call 0x1000000
8D 4A 20 lea ecx, [edx+0x20]
8B 41 04 mov eax,DWORD PTR [ecx+0x4]
56 push esi
8B 31 mov esi,DWORD PTR [ecx]
68 BB 01 00 00 push 0x1bb ; Port 443 (decimal)
68 01 00 00 00 push 0x1
56 push esi
E8 call

Lazy mode

16

 © Intel 471 Inc. 2024

rb‘\xE8.{8,128}?\x68(?P<tcp_port>..\x00\x00).{1,6}?\xE8’

E8 FB FF FF 00 call 0x1000000
8D 4A 20 lea ecx, [edx+0x20]
8B 41 04 mov eax,DWORD PTR [ecx+0x4]
56 push esi
8B 31 mov esi,DWORD PTR [ecx]
68 BB 01 00 00 push 0x1bb ; Port 443 (decimal)
68 01 00 00 00 push 0x1
56 push esi
E8 call

Lazy mode

17

 © Intel 471 Inc. 2024

Greedy mode

● Consume as much as possible then backtrack to yield longest match.

.{8,64}\xE8

● Allows to retrieve the last occurrence.

● Can cause bugs when used incorrectly to extract artifacts.

18

 © Intel 471 Inc. 2024

Greedy mode

rb‘\xE8.{8,128}\x68(?P<tcp_port>..\x00\x00).{1,6}\xE8’

E8 FB FF FF 00 call 0x1000000
8D 4A 20 lea ecx, [edx+0x20]
8B 41 04 mov eax,DWORD PTR [ecx+0x4]
56 push esi
8B 31 mov esi,DWORD PTR [ecx]
68 BB 01 00 00 push 0x1bb
68 01 00 00 00 push 0x1
56 push esi
E8 call

19

 © Intel 471 Inc. 2024

rb‘\xE8.{8,128}\x68(?P<tcp_port>..\x00\x00).{1,6}\xE8’

E8 FB FF FF 00 call 0x1000000
8D 4A 20 lea ecx, [edx+0x20]
8B 41 04 mov eax,DWORD PTR [ecx+0x4]
56 push esi
8B 31 mov esi,DWORD PTR [ecx]
68 BB 01 00 00 push 0x1bb
68 01 00 00 00 push 0x1
56 push esi
E8 call

Greedy mode

20

 © Intel 471 Inc. 2024

rb‘\xE8.{8,128}\x68(?P<tcp_port>..\x00\x00).{1,6}\xE8’

E8 FB FF FF 00 call 0x1000000
8D 4A 20 lea ecx, [edx+0x20]
8B 41 04 mov eax,DWORD PTR [ecx+0x4]
56 push esi
8B 31 mov esi,DWORD PTR [ecx]
68 BB 01 00 00 push 0x1bb
68 01 00 00 00 push 0x1
56 push esi
E8 call

Greedy mode

Port was skipped

21

 © Intel 471 Inc. 2024

rb‘\xE8.{8,128}\x68(?P<tcp_port>..\x00\x00).{1,6}\xE8’

E8 FB FF FF 00 call 0x1000000
8D 4A 20 lea ecx, [edx+0x20]
8B 41 04 mov eax,DWORD PTR [ecx+0x4]
56 push esi
8B 31 mov esi,DWORD PTR [ecx]
68 BB 01 00 00 push 0x1bb
68 01 00 00 00 push 0x1
56 push esi
E8 call

Greedy mode

Incorrect port in group

tcp_port != 0x01

22

 © Intel 471 Inc. 2024

rb‘\xE8.{8,128}\x68(?P<tcp_port>..\x00\x00).{1,6}\xE8’

E8 FB FF FF 00 call 0x1000000
8D 4A 20 lea ecx, [edx+0x20]
8B 41 04 mov eax,DWORD PTR [ecx+0x4]
56 push esi
8B 31 mov esi,DWORD PTR [ecx]
68 BB 01 00 00 push 0x1bb
68 01 00 00 00 push 0x1
56 push esi
E8 call

Greedy mode

Incorrect port in group

tcp_port != 0x01

23

 © Intel 471 Inc. 2024

Lazy vs. Greedy

● Opt for lazy mode when regex is FP prone:

○ The pattern after the range quantifier is too generic.

● The choice of which mode heavily depends on the specific use-case.

24

 © Intel 471 Inc. 2024

Regex: hands-on
● Stack string decryption loop in the RisePro stealer.

● We want to match and extract the XOR key and string length.

● Decryption process:

○ Add the current index to the initial XOR key: value is 0x27 (changes between samples).

○ XOR byte on stack, increment the index and compare the length.

25
Key = 0x27, Length = 14

 © Intel 471 Inc. 2024

Regex: hands-on

● Decryption process:

○ Add the current index to the initial XOR key: value is 0x27 (changes between samples).

○ XOR byte on stack, increment the index and compare the length.

● Samples has 2 equivalent variants of how the key is calculated: LEA vs. MOV + ADD

26

Length == 6Length == 14Length == 9

 © Intel 471 Inc. 2024

Regex: hands-on

re.compile(
(

rb’(\x8A\xC1\x04|\x8D\x41)(?P<key>.)’

Length == 6Length == 14Length == 9

27

 © Intel 471 Inc. 2024

Regex: hands-on

re.compile(
(

rb’(\x8A\xC1\x04|\x8D\x41)(?P<key>.)’
rb’\x30(\x44\x0D.|\x84\x0D….)’

Length == 6Length == 14Length == 9

28

 © Intel 471 Inc. 2024

Regex: hands-on

re.compile(
(

rb’(\x8A\xC1\x04|\x8D\x41)(?P<key>.)’
rb’\x30(\x44\x0D.|\x84\x0D….)’
rb’\x41’
rb’\x83\xF9(?P<len>.)’
rb’\x72’

), re.DOTALL)

Length == 6Length == 14Length == 9

29

 © Intel 471 Inc. 2024

Regex: challenges

● The regular expression we wrote does not match all decryption loops.

○ Some loops use registers we did not take into account.

○ Regex needs to be improved to match these blocks.

Other loops

Example we worked on

30

● Code is volatile. Regex is better suited for text.

 © Intel 471 Inc. 2024

Regex: challenges

● The x86 and x86-64 instruction sets are tricky. For example:

○ A lot of instructions support a memory operand as either src or dest.

○ But never two memory operands.

○ Requires the instruction to be encoded two different ways.

○ When both operands are registers, the two encodings become equivalent.

○ The choice of which encoding to use is left to the assembler.

● A variance to consider.

89 c6 mov esi, eax ; MOV r/m32 , r32
8b f0 mov esi, eax ; MOV r32 , r/m32

31

 © Intel 471 Inc. 2024

Regex: challenges

● Stack-frame indexing:

○ Usually by the stack-frame base pointer EBP e.g. [EBP-0x0C].

○ But ESP could be used as a base e.g. [ESP+0x0C].

■ Frame-Pointer Omission optimization.

● An additional variance to consider.

Pikabot (EBP-based frame indexing) Pikabot (ESP-based frame indexing)

32

 © Intel 471 Inc. 2024

Regex: challenges

● What seemed to be a trivial regex to write would end up:

○ Taking time to find variants and to anticipate any future code changes.

○ Gathering technical debt.

Example commit 1: Builds appeared that would use other registers than EDI

33

 © Intel 471 Inc. 2024

Regex: challenges

● What seemed to be a trivial regex to write would end up:

○ Taking time to find variants and to anticipate any future code changes.

○ Gathering technical debt.

Example commit 1: Builds appeared that would use other registers than EDI

Example commit 2: In some samples, functions had a larger variable space.

34

 © Intel 471 Inc. 2024

Regex: challenges

● What seemed to be a trivial regex to write would end up:

○ Taking time to find variants and to anticipate any future code changes.

○ Gathering technical debt.

Example commit 1: Builds appeared that would use other registers than EDI

Example commit 2: In some samples, functions had a larger variable space.

Example commit 3: The branch target could be farther. ‘JNZ near’ is possible.

35

 © Intel 471 Inc. 2024

● Experimental tool we developed to tackle these challenges.

● Generates generic regular expression given a stream of code (x86 or x86-64).

● Relies on the iced assembler/disassembler (https://github.com/icedland/iced).

● Released today on: https://github.com/intel471/coderex

Introducing Coderex

36

 © Intel 471 Inc. 2024

Introducing Coderex

30 44 0d dd

1. Input bytes

xor [ebp+ecx-0x23], al

2. Disassemble

37

● Experimental tool we developed to tackle these challenges.

● Generates generic regular expression given a stream of code (x86 or x86-64).

● Relies on the iced assembler/disassembler (https://github.com/icedland/iced).

● Released today on: https://github.com/intel471/coderex

 © Intel 471 Inc. 2024

Introducing Coderex

30 44 0d dd

1. Input bytes 2. Disassemble 3. Analyze

xor [ebp+ecx-0x23], al xor [stack_reg+reg32-offset], reg8

38

● Experimental tool we developed to tackle these challenges.

● Generates generic regular expression given a stream of code (x86 or x86-64).

● Relies on the iced assembler/disassembler (https://github.com/icedland/iced).

● Released today on: https://github.com/intel471/coderex

 © Intel 471 Inc. 2024

Introducing Coderex

30 44 0d dd

1. Input bytes 2. Disassemble 3. Analyze

xor [esp+edx+0x23], cl xor [ebp+edi-0x1023], dl etc…

4. Generate and assemble permutations

xor [stack_reg+reg32-offset], reg8xor [ebp+ecx-0x23], al

39

● Experimental tool we developed to tackle these challenges.

● Generates generic regular expression given a stream of code (x86 or x86-64).

● Relies on the iced assembler/disassembler (https://github.com/icedland/iced).

● Released today on: https://github.com/intel471/coderex

 © Intel 471 Inc. 2024

Introducing Coderex

rb'(\x30(([\x44\x4c\x54\x5c][\x04\x05\x0c\x0d\x14\x15\x1c\x1d\
x34\x35\x3c\x3d])|(([\x84\x8c\x94\x9c][\x04\x05\x0c\x0d\x14\x1

5\x1c\x1d\x34\x35\x3c\x3d])...)).)'

5. Output optimized regular expression

xor [ebp+ecx-0x23], al30 44 0d dd

1. Input bytes 2. Disassemble 3. Analyze

4. Generate and assemble permutations

xor [stack_reg+reg32-offset], reg8

xor [esp+edx+0x23], cl xor [ebp+edi-0x1023], dl etc…

40

● Experimental tool we developed to tackle these challenges.

● Generates generic regular expression given a stream of code (x86 or x86-64).

● Relies on the iced assembler/disassembler (https://github.com/icedland/iced).

● Released today on: https://github.com/intel471/coderex

 © Intel 471 Inc. 2024

Coderex: Demo
● Generic x86 regular expression for:

○ 21 C0 and eax, eax

● Visualize the regular expression using: https://regexper.com/

● Assemble a few variants from the regex.

○ Online assembler/disassembler: https://defuse.ca/online-x86-assembler.htm

○ Notice that:

■ Coderex detected that the source and destination are the same.

■ Both r/m32 and m32/r encodings are generated.

41

https://regexper.com/
https://defuse.ca/online-x86-assembler.htm

 © Intel 471 Inc. 2024

Coderex

42

● In some cases we’d want to modify the regexes:

○ To add in groups.

○ Wildcard offsets.

● We need to understand the assumptions the tool makes.

 © Intel 471 Inc. 2024

regex = re.compile(
(

mov eax,1337h ; '.{5}'
rb'([\xb8-\xbb\xbe\xbf]\x37\x13\x00\x00)'

add eax,10h ; '.{3}'
rb'(\x83[\xc0-\xc3\xc6\xc7]\x10)'

), re.DOTALL
)

● Immediate values are preserved.

Immediates

43

 © Intel 471 Inc. 2024

call 01001400h
rb'(\xe8....)'

jmp near ptr 01001400h
rb'(((\xe9...)|\xeb).)'

● Call targets are wildcarded.

● For relative jumps, both short (1 byte) and near (4 bytes) variants are generated.

Branching

44

 © Intel 471 Inc. 2024

mov dword ptr ds:[1000h],1337h ; '.{10}'
rb'(\xc7\x05....\x37\x13\x00\x00)'

call dword ptr ds:[2000h] ; '.{6}'
rb'(\xff\x15....)'

jmp dword ptr ds:[3000h] ; '.{6}'
rb'(\xff\x25....)'

● Direct memory accesses are wildcarded.

Memory (Direct)

45

 © Intel 471 Inc. 2024

● Displacements are trickier to handle.

● Base address assumed for code/memory:

○ 0x100000 by default.

○ Only displacements above or equal will be wildcarded.

Memory (Displacement)

$ coderex -c “8d 34 b5 00 11 00 00” -a x86
regex = re.compile(

(
lea esi,[esi*4+1100h] ; '.{7}'
rb'(\x8d(\x04\x85|\x0c\x8d|\x14\x95|\x1c\x9d|\x34\xb5|\x3c\xbd)\x00\x11\x00\x00)'

), re.DOTALL
)

46

 © Intel 471 Inc. 2024

● For code that accesses low memory addresses. For example:

○ Shellcode loaded into a low address segment in IDA Pro.

● Override default base address using ‘-d’.

Memory (Displacement)

$ coderex -c “8d 34 b5 00 11 00 00“ -a x86 -d 0x1000
regex = re.compile(

(
lea esi,[esi*4+1100h] ; '.{7}'
rb'(\x8d(\x04\x85|\x0c\x8d|\x14\x95|\x1c\x9d|\x34\xb5|\x3c\xbd)....)'

), re.DOTALL
)

47

 © Intel 471 Inc. 2024

Coderex: hands-on

Manual regex Generic regex

48

 © Intel 471 Inc. 2024

Part III - Unicorn and Capstone.

● Objective: write an Emotet config extractor for C2 servers.

● Introduce the Unicorn emulation engine:

○ To write config extractor for a single C2.

○ 1 Hands-on task.

● Introduce the Capstone disassembler engine:

○ To improve the extractor to automatically extract all C2s.

○ 2 Hands-on tasks.

49

 © Intel 471 Inc. 2024

Unicorn engine
● Lightweight and multi-architecture CPU emulator framework based on QEMU.

● Interprets machine instructions within a software-based context to replicate the behavior of a CPU.

● Actively maintained and widely adopted by the malware community.

● Easy to install: “pip install unicorn”

www.unicorn-engine.org

50

http://www.unicorn-engine.org

 © Intel 471 Inc. 2024

Using Unicorn

51

from unicorn import *
from unicorn.x86_const import *

● unicorn module:

○ Contains the “Uc” emulation class.

X86 registers

UC_X86_REG_INVALID = 0
UC_X86_REG_AH = 1
UC_X86_REG_AL = 2
UC_X86_REG_AX = 3
…
UC_X86_REG_RAX = 35

X86 instructions
UC_X86_INS_INVALID = 0
UC_X86_INS_AAA = 1
UC_X86_INS_AAD = 2
UC_X86_INS_AAM = 3
UC_X86_INS_AAS = 4
UC_X86_INS_FABS = 5
…

● x86_const module:

○ Defines x86 and x86-64 constants for registers and instructions.

 © Intel 471 Inc. 2024

Using Unicorn

52

code to be emulated
X86_CODE32 = b"\x41\x4a" # INC ecx; DEC edx

memory address where emulation starts
ADDRESS = 0x1000000

● Initialize the instructions to emulate.

○ 41 INC ECX

○ 4A DEC EDX

● Setup address where they will be written to in the emulator’s memory.

 © Intel 471 Inc. 2024

Using Unicorn

53

Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)

● Instantiate an Unicorn emulator object “Uc” for the target architecture.

○ UC_ARCH_X86: The x86 CPU architecture.

○ UC_MODE_32: The 32-bit CPU mode.

■ UC_MODE_64 to emulate 64-bit code.

 © Intel 471 Inc. 2024

Using Unicorn

54

map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)

write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32)

● In a fresh emulator, all memory is unmapped.

○ Raises an exception when accessed.

● Call “mem_map” to map memory with:

○ The memory address to map in the address space.

○ The memory size in bytes aligned to page boundary (4096).

○ The permissions, by default RWX.

● Memory can then be written to using mem_write.

 © Intel 471 Inc. 2024

Using Unicorn

55

initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)

mu.reg_write(UC_X86_REG_EDX, 0x7890)

● Initialize registers affected by calling “reg_write”:

○ ECX = 0x1234

○ EDX = 0x7890

● All registers are initially 0.

 © Intel 471 Inc. 2024

Using Unicorn

56

emulate code in infinite time & unlimited instructions
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32))

● Call “emu_start” with the arguments:

○ Start address of the code: 0x1000000.

○ End address: 0x1000002.

● “emu_start” synchronously emulates the code.

○ Only returns when the end address is reached or an exception occurs.

○ Can get stuck indefinitely or for a long time.

 © Intel 471 Inc. 2024

Using Unicorn

57

emulate code in infinite time & unlimited instructions
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32))

● “emu_start” accepts 1 of these 2 arguments to control the emulator’s execution.

○ “count”: A number that limits the individual instructions to execute.

○ “timeout”: The maximum runtime of the emulation in nanoseconds.

■ 10 milliseconds: 10 * UC_MILISECOND_SCALE

■ 10 seconds: 10 * UC_SECOND_SCALE

 © Intel 471 Inc. 2024

Using Unicorn

58

emulate code in infinite time & unlimited instructions
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32))

● Emulation stops at whichever comes first:

○ The instruction pointer reached the end address.

○ The “count” or “timeout” has expired.

○ An exception occured.

 © Intel 471 Inc. 2024

Using Unicorn

59

now print out some registers
print("Emulation done. Below is the CPU context")

r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)

● After emulation:

○ ECX = 0x1234 + 1 = 0x1235

○ EDX = 0x7890 - 1 = 0x788f

 © Intel 471 Inc. 2024

● To learn more about the engine’s capabilities, find examples at:

○ https://github.com/unicorn-engine/unicorn/blob/master/bindings/python/sample_x86.py

Using Unicorn

60

https://github.com/unicorn-engine/unicorn/blob/master/bindings/python/sample_x86.py

 © Intel 471 Inc. 2024

● In May 2022, Emotet updated its C2 config storage method.

○ Callback table of 64 functions.

○ Each function decodes and returns the C2 IP and port.

○ The C2 can be a decoy.

○ The table is walked until a functional C2 is found.

Callback table being initialized

Case-study: Emotet

Callback function

● Callback functions:

○ 1 basic block.

○ Mostly junk code.

○ Uses XOR to calculate the C2 IP and port.

61

 © Intel 471 Inc. 2024

Callback function

62

 © Intel 471 Inc. 2024

Callback function

● XOR parameters are written to the stack.

○ IPv4 parts: ip_xor_v1, ip_xor_v2

○ Port parts: port_xor_v1, port_xor_v2

Junk

63

 © Intel 471 Inc. 2024

Callback function

Junk

● ip_xor_v0 ^ ip_xor_v1 = IPv4 in network-byte order.

● Stored to the output argument in offset 0.

64

 © Intel 471 Inc. 2024

Junk

● port_xor_v0 ^ port_xor_v1 = 32-bit integer

● Stored to the output argument in offset 4.

● Encodes two 16-bit values:

○ offset 0x04: 0 if it’s a decoy C2, 1 if real.

○ offset 0x06: The port integer in little-endian.

Callback function

65

 © Intel 471 Inc. 2024

Extraction options

Junk

● Use regular expressions:

○ Junk code => unpredictability.

■ Inserted at compile-time.

■ Could break or interfere with regex patterns.

○ Risks:

■ We could extract wrong XOR parts (junk code).

■ New samples could change the XOR to an ADD or SUB etc.

■ Extractor logic may yield wrong but valid IPv4 addresses.

66

 © Intel 471 Inc. 2024

Extraction options

Junk

● Use Code Emulation:

○ Treat callbacks as gray-boxes:

■ Emulate the function’s x64 instructions.

■ Read out the results from the emulator’s memory.

○ Arithmetic operator changes will have no effect e.g. XOR, ADD, SUB

67

 © Intel 471 Inc. 2024

● We’ll start by emulating a single function.

● We will automate the collection and emulation

of all functions later on.

Emulating a callback: Hands-on

68

 © Intel 471 Inc. 2024

● Callbacks use the stack:

○ To store the artifact parts.

● We have to map memory for the stack in the

emulator’s memory.

● Set RSP to point somewhere in the middle.

○ Stack grows downwards.

69

Emulating a callback: Hands-on

 © Intel 471 Inc. 2024

● Callbacks expect a single argument:

○ Output memory location.

○ Size: 8 bytes.

● We have to map a memory region for the

output argument.

● Set RCX to its address.

70

Emulating a callback: Hands-on

 © Intel 471 Inc. 2024

● Emulate the function.

● Read the function’s output from the passed in

argument:

○ Offset 0x00: IPv4.

○ Offset 0x04: Is real or decoy C2?

○ Offset 0x06: Port.

● Validate the IP and port and format into a C2:

○ e.g. “https://129.232.188.93:443”

IPv4 address
(network-byte order aka big-endian)

4 bytes

Is Real C2?
(little-endian)

2 bytes

Port
(little-endian)

2 bytes

0x00 0x04 0x06

71

Emulating a callback: Hands-on

 © Intel 471 Inc. 2024

Extracting all controllers

● Find all callbacks and emulate each one of them.

72

 © Intel 471 Inc. 2024

● Step 1: Find possible callback functions using a regular expression.

Steps

● Step 2: Validate them by examining the disassembly.

○ Must have a single basic block.

■ No jumps.

○ Must not call to another function.

● Step 3: Emulate validated callbacks.

73

 © Intel 471 Inc. 2024

● Step 1: Find possible callback functions using a regular expression.

● Step 2: Validate them by examining the disassembly.

○ Must have a single basic block.

■ No jumps.

○ Must not call to another function.

● Step 3: Emulate validated callbacks.

Steps

74

 © Intel 471 Inc. 2024

● Step 1: Find possible callback functions using a regular expression.

● Step 2: Validate them by examining the disassembly.

○ Must have a single basic block.

■ No jumps.

○ Must not call to another function.

● Step 3: Emulate validated callbacks ✅

Steps

75

 © Intel 471 Inc. 2024

● A LEA instruction loads the address of each

callback function into a 64-bit register.

Step 1: Find possible callbacks

● Create a regex to match this pattern across the

whole binary.

● We only want to process references to code.

○ Validate match and xref are in the same section.

● Will still match functions that are not C2 callbacks.

○ Filtered out in the next step.

76

File: “IDBs/emotet/emotet_0.bin.i64”
Disassembly at 0x1800030DF

 © Intel 471 Inc. 2024

● Step 1: Find possible callback functions using a regular expression.

Step 2: Validating callbacks

● Step 2: Validate them by examining the disassembly.

○ Must have a single basic block.

■ No jumps.

○ Must not call to another function.

● Step 3: Emulate validated callbacks.

77

 © Intel 471 Inc. 2024

Capstone engine
● Lightweight multi-platform, multi-architecture disassembly framework.

● Intuitive and easy-to-use API to disassemble and analyze instructions.

● Actively maintained, used by projects such as Radare2.

● Easy to install: “pip install capstone”

www.capstone-engine.org

78

http://www.capstone-engine.org

 © Intel 471 Inc. 2024

● Learn more about Capstone capabilities:

○ https://github.com/capstone-engine/capstone/blob/next/bindings/python/test_x86.py

Capstone engine

79

https://github.com/capstone-engine/capstone/blob/next/bindings/python/test_x86.py

 © Intel 471 Inc. 2024

● Already done that earlier in this section.

Step 3: Emulate validated callbacks

80

 © Intel 471 Inc. 2024

Conclusion

81

● Malware evolves and changes are unpredictable.

● The extractor will break but things can be done to minimize that:

○ Anticipate changes e.g. generic regex.

○ Rely on the static parts when possible. Example:

■ Check many versions, see what doesn’t change in/around an area you want to locate.

■ Chances are future versions are the same.

● It is better for the extractor to register nothing than to yield wrong IOCs.

○ Perform sanity checks.

○ Log extensively to help with debugging.

 © Intel 471 Inc. 2024

Emulating code that calls into other functions and/or accesses its data sections would require mapping the PE executable into the
emulator’s memory. Writing the raw PE file to memory, as it is on disk, would lead to invalid relative offsets and memory accesses since
the alignment of PE sections in the physical file differs from their alignment in memory. To map a PE to Unicorn engine’s memory:

Appendix 1: Mapping PE to Unicorn Memory

82

load PE file.
pe = pefile.PE(pe_path)

Get memory-mapped PE image.
pe_img = pe.get_memory_mapped_image()

Get the image base address.
img_base = pe.OPTIONAL_HEADER.ImageBase

Initialize Unicorn
emulator = unicorn.Uc(unicorn.UC_ARCH_X86, unicorn.UC_MODE_32)

Map memory for the PE at the image base. The image size is aligned to page boundary.
emulator.mem_map(img_base, (len(pe_img) + 0xfff) & ~0xfff)

Write the memory-mapped image to the emulator's memory at the image base.
emulator.mem_write(img_base, pe_img)

 © Intel 471 Inc. 2024

The Unicorn engine is OS-agnostic, and so emulating code will inevitably lead to exceptions or undefined behavior. Luckily the engine
offers useful hooks for the developer to correct the behavior or implement workarounds. The implementation details are largely tied to
specific use-cases hence why these hooks are user-defined.

One notable hook - that we find ourselves registering a lot - is the invalid memory access hook. It is a function that gets invoked when
the emulated instruction causes an invalid memory access. The hook would attempt to resolve this access by mapping the memory at
the faulting address and returning ‘True’. In which case, the Unicorn engine would re-execute the instruction and continue emulation.
On the other hand, emulation would stop when the hook returns ‘False’.

Appendix 2: Unicorn engine hooks

83

def uc_invalid_mem_access_hook(emulator, access_type, address, size, value, _user_data):
 # Align to previous page boundary and map e.g. address 0x20098 becomes 0x20000.
 emulator.mem_map(address & ~0xfff, 0x1000)
 return True

Initialize the emulator and register the hook
emulator = unicorn.Uc(unicorn.UC_ARCH_X86, unicorn.UC_MODE_32)
emulator.hook_add(unicorn.UC_HOOK_MEM_INVALID, uc_invalid_mem_access_hook)

 © Intel 471 Inc. 2024

The code hook is another useful callback that you will usually need to implement. A major drawback is that it slows
down the emulation speed considerably because the engine breaks out to invoke the user-defined function prior to
the execution of every instruction.

The example below uses this hook to skip all call instructions in the emulated code with the help of Capstone.

Appendix 2: Unicorn engine hooks

84

Initialize Capstone
cap_md = capstone.Cs(capstone.CS_ARCH_X86, capstone.CS_MODE_32)
cap_md.detail = True

def uc_code_hook(emulator, address, size, user_data):
 try:
 # Read and disassemble the instruction
 inst = next(cap_md.disasm(emulator.mem_read(address, size), 0))
 except StopIteration:
 return
 # If it's a CALL instruction skip it
 if inst.id == capstone.x86.X86_INS_CALL:
 emulator.reg_write(unicorn.x86_const.UC_X86_REG_EIP, address + size)

Initialize Unicorn and register the code hook
emulator = unicorn.Uc(unicorn.UC_ARCH_X86, unicorn.UC_MODE_32)
emulator.hook_add(unicorn.UC_HOOK_CODE, uc_code_hook)

Thank you!

85

@Dark_Puzzle

@stamparm

