TrelliX

DotNet Malware
Analysis
Workshop

Botconf 2024

Max Kersten
Malware Analyst

Table of
contents

About me

About the workshop

Virtual safety

Common technigues

The DotNet Framework

Samples

Configuration extraction

Q&A

TrelliX

About me

Max ‘Libra’ Kersten (@Libranalysis,
@libra@infosec.exchange)

Spoke at numerous conferences (BlackHat
USA/EU/MEA/Asia, DEFCON, Botconf, and others)

Malware analyst and reverse engineer

Working for Trellix’ Advanced Research
Center

Published DotDumper

| write blogs about reverse engineering
Including my free Binary Analysis Course

My tools are open-sourced on GitHub

Such as AndroidProjectCreator and the Mobile Malware
Mimicking Framework

TrelliX

https://twitter.com/Libranalysis
https://infosec.exchange/@libra
https://github.com/advanced-threat-research/DotDumper
https://maxkersten.nl/
https://maxkersten.nl/binary-analysis-course/
https://github.com/ThisIsLibra/
https://maxkersten.nl/projects/androidprojectcreator/
https://github.com/ThisIsLibra/m3
https://github.com/ThisIsLibra/m3

Who are you

A brief introduction round

TrelliX

3

W’
4

Il
il

o

kg
poideacal

Ay

e

_.l

T

MRRRNEESS

i

i -

11 g
o _m_ i Iy
,:. ,~m _:

38

L — L]
aphglabecacpn
m.mm_mfmmmmm_m__ |

oy | alE0 IR T e

L

od |

J)

3 | , 1
i ¢ il

e

—- nu

L4
1.8

il -
r

|
LED

v

About the
WOrkshop

Aims to teach
concepts

DotNet lends
itself well for
analysis

Focus on the
analyst's
mindset

Loaders,
reflection,
(managed)
hooking

Current
tooling is
easy-to-use

Avoid
needless
details

TrelliX

Virtual \Virtual machines
safety

Snapshots

Old, but not
defunct, samples

TrelliX

Common
technigues

QN

Modular and staged malware

Downloaders

Persistence

Process injection

Obfuscation

TrelliX

The DotNet
Framework

VM-based architecture

(.v‘ Core versus Framework

Eﬂ Just-In-Time compiled

TrelliX

—77/7 /01 1 VANANNNSSSNNN\NNMNNVNLV YV /2772277770 0 VNNNSNSSSSNNAN\\NNNVNLV YV YV 27—

-
~

Load instructions |——» Fetch next instruction ——»| Execute instruction

T

—es7 /70 1 T VNANNSNSSSNNNANNNVNL) 227 r
~~\\\\N\ |V /) /777777] | VNV NNNS

77701 L VNANNSNSSSNANANNVNLV)/ /72 27=~77770] 1 VANNNSNSSNN\N\NNVNIV YV /2277~

TrelliX

DotNet Internals

What is what?

- - —O-

[o2

) innnnin) *
JIT Reflection Types

TrelliX

DotNet
INnternals

o JIT

o O

o O

O 0 0 O O

Assembly, IL, and decompiled code

VB.INET and C# equally easy to display based on the
AST

Reflection

Code to execute code (invoke code)
Use code in variables

Types
Preserved in the Intermedia Language, unlike plain ASM
Assembly: type versus language

Type: a class
NVethodinfo and MethodBase

TrelliX

The samples

An overview

3

Wipers

Test the tooling

Understand the analyst's
mindset

(v

DotNet RAT

Observe obfuscation and
multi-stage techniques

©

CyaX-Sharp
Determine capabilities

Try to remember as much as
possible

TrelliX

Wipers

Getting started

3

Stage 1

Get used to the tooling

How are files wiped?

Stage 2

What are the prerequisites
prior to wiping files?

P
)

Stage 3

What overlap can you find
between the samples?

TrelliX

DotNet RAT

What to focus on

7
Stage 1

How is the next stage loaded?

What obfuscation techniques
do you encounter?

%"
{7
Stage 2

What checks are performed?

What benign software is
downloaded?

(v

Stage 3
What is the RAT's family?
How is the malware persisted?

TrelliX

CyaX-Sharp

What to do

3 AN

® o
Il - @& &
Understanding the Situational awareness Invoking the next stage
structure
How is the loader designed? What is the loader checking for? How does it work?
What impedes the analysis? Why are such checks in place? Can you spot a pattern?

TrelliX

Configuration
extraction

== Gather data

- Insight into trends and TTPs

Avoid manual work

- Avoid mistakes
- Mundane

mm | WO types

- Family specific
- Generic

TrelliX

Family.
specific g Reflection
automation

‘ Extraction logic

Static, dynamic, Dbepends on
or combined the scale

TrelliX

CyaX-Sharp unpacking

What to do

I‘;'I)‘\ '— %

Find the loader's payload and Extract the payload Parse the configuration
configuration

TrelliX

Generic
unpacking

Hooking

Avoid recursion

Static, dynamic,
or combined

Managed
Unmanaged

Depends on
the scale

TrelliX

77711 1 VANANNNSSSNNANN\N\NNVNV YV /2 /7= /70] 1 VNNNSNSSSNSNN\N\NNVNLV Y/ /27—

\ /
\ /
AN /
N 7
~ -
~ -
- , Replace the function Y =
- Obtain the target . . Wait until the target Let the hook handle ~
v Start | function’s address . prn[otgue WiR 3 Jump | function is called ® thefunctioncall |] \
o the hook '
/ ' AN
/ . \
/ 1 ' \
/ Y \
g Call the original Resume execution N
7 ; N
> function —| Return a valid value ——» normally N
- ~
~~ -
~ -
~N Ve
\ /
\ /
\ /

=/ 70 T T VANNNNSNSSNNN\\N\\V |1/ / /777701 1 VANNNSNSSNNN\N\NN\VNI [/ /V /7=

TrelliX

Generic unpacking

A step-by-step guide

Find a suitable target function

What is commonly used?
Are there any roadblocks?

Plan your hook

What do you need?
How will perform your actions?

Test your method

Start with a small proof-of-concept version

TrelliX

—_— /s mrm——=~~N\\
——z/7/]I/ /77—~ \\
~r7/7/1 11\ 1 [/ 7 777=——~<~N\\
S PR RBR R E P EEE St
PP IS ERERBEE PN T G e
AEEPL T YA LA | T #F FoEas—aas
ZESLELE T YANNYT | Fd 2Fratermiss
24T T N ANANNMY | B L L 7 £
241 TOTYNSNNNRYN)} LT £ F Pt
/1 L AVANANNNNN\VNLV /7 777——
/1 I V\NANNNNN\NWN\V\ IV /V /7 77——
P AASNASSSASKRNNYV I L2
FIYAMNANSsSSXNANVLYVL L g
| ¥ A A NS SANXNIT) [£ 722+
| VA ANSNSNS~—~~N\\N\\V\ VYV 2277
V VANNSN~S———~NNN\N\N\N\\\ L [/2277
\AANNSNS—~——=NN\N\N\\ VN | [/77
\ANSNSN~—————=~N\\\N\ | | [/7
ANNSNS—————=~NN\AN\N\\ V| [/7
N RSt b S AN XS [1
\\\\~-—/////———\\\\\\\ \ ’ /
SN~———_-,,/7/7777———~~\\\ \ \ \

Q&A

For questions, you can also reach
out to me via @Libranalysis,
@libra@infosec.exchange, or Max

Kersten on LinkedIn
TrelhiX

https://twitter.com/Libranalysis
https://infosec.exchange/@libra
https://www.linkedin.com/in/thisislibra/
https://www.linkedin.com/in/thisislibra/

	Slide 1: DotNet Malware Analysis Workshop
	Slide 2
	Slide 3
	Slide 4: Who are you
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: DotNet Internals
	Slide 12
	Slide 13: The samples
	Slide 14: Wipers
	Slide 15: DotNet RAT
	Slide 16: CyaX-Sharp
	Slide 17
	Slide 18
	Slide 19: CyaX-Sharp unpacking
	Slide 20
	Slide 21
	Slide 22: Generic unpacking
	Slide 23: Q&A

