
10 Years of Large-Scale Malware Comparison:
Going Deeper With Machoke

Stefan Le Berre / Tristan Pourcelot

Who are we?

Small company focused on finding unknown attackers

- Incident Response

- Threat Hunting

- Threat Intelligence

Stefan Le Berre: CEO/Cofounder

Tristan Pourcelot: Senior Threat Hunter

Overview

1. What is Machoc?
2. Evolving into Machoke
3. A wild Zubat appears
4. Conclusion

Malware challenges

Some challenges of “day to day” malware analysis:

• “Here is a USB drive with 100 samples, reverse them
for yesterday”

• Do I already know this sample?

• Does it belong to a known family?

• What’s new in this sample vs an older one?

• Does this sample share functions with another one?

“Karate Chop“

We developed the Machoc hash at ANSSI/CERT-FR

We published it 10 years ago at SSTIC

• Able to compare hundreds of malwares in a few
seconds.

• But we want to scale to a larger dataset (million of
samples)

• And we wanted to go deeper

https://github.com/ANSSI-FR/polichombr/blob/dev/docs/MACHOC_HASH.md
https://www.sstic.org/2016/presentation/demarche_d_analyse_collaborative_de_codes_malveillants/

Machoc

Machoc in a couple of seconds:
The objectives were the following:

- Simple algorithm
- Fast to calculate
- Resistant to small changes (such as a malware C2

update)
For each function:

- Extract the summary of a function:
- Control Flow Graph (CFG)
- Inner Calls

- Make a textual representation of these information
- Hash it

Machoc

1:2,3;
2:;
3:4,10;
4:6;
5:6;
6:c,7;
7:c,8
8:5,9;
9:10;
10:;

40030:3003dfd5

MurmurHash3

Address of the
function

Machoc

Repeat this operation for each function and concatenate all results to a big string.

40168:c814dbb3;402c0:94b076dc;405d0:0fec5a12;…

Matching is done by calculating a Jaccard distance between two sets of hashes

• Successes:
• Malware clustering
• Identification and attribution of unknown malware samples
• Label propagation for common functions between samples
• Identification of shared libs between firmware versions
• Identification of changed functions between releases of

firmware
• We were surprised by the numbers of people using it

• Limits:
– Runtime similarity (Hi OpenSSL!)
– “Small” functions
– Exponential complexity of diffing, doesn’t scale to 100k samples

Machoc

Machoke

We must change our approach to scale on a large
dataset, and transform this exponential calculation to
linear.

The solution was to use bitmaps!

. .
.
.

. .
.

40168:c814dbb3

402c0:94b076dc

405d0:0fec5a12

Machoke

Comparing bitmaps is done by substraction:

Blue point is a difference on density in this point

. .
.
.

. .
.

. .
.
.

.
.

.
- =

.

..

Machoke

Cool! We now have the capacity to compare thousands
of bitmaps in a linear time :)

But!

It’s too slow again :’(

Because we have to compare all bitmaps each time.

So we added two levels of clustering

Machoke – Func Counting

An executable with 100 functions will never have a 80%
match with a 50 functions binary.

• Add a filter layer with a count of disassembled
functions.

We added a second clusterization level using a
reduction of bitmaps density

• We had to generate small heatmaps representing the
global density of the sample’s bitmaps.

Machoke – 3 steps

..
.

. ..
..
..
..

. .
..

..
..
. .
..

. . .

Machoke - HeatMap

.
. .
.

.

. .

. . ..

.

.
.

.

.

.
. .

Machoke

The three steps of Machoke filters:

- We start by listing binaries with a similar functions
count.

- We compare the heatmaps to quickly filter possible
matches.

- Then we compare the full bitmaps of each sample
and find exactly which ones are matching.

Machoke

We still got some problems:

- Samples share static libraries (Hi OpenSSL again!)

- Compilers include runtimes

- More and more “all-in-one” binaries (Hi Go!)

Machoke

How to solve the runtime problems?

- We compute the bitmaps of benign samples,
libraries, etc.

- Each malware is compared with them and matching
points are extracted to a new “runtime_bitmap”.

- For each of these bitmaps we substract the nearest
“runtime_bitmap” to every sample in the list

- We now have only the “malware” code to match

Machoke

. ..

.

.
..

.

. ..

.

.
..

.

. ..

.

.
..

.

. ..

.

.
..

.

Bin1.go

Bin2.go

Bin{N}.go

Probable Go
runtime_bitmap

. .

.

.
..

.

.

.

.

.

. .

Machoke - Demo

We used these techniques in the Exalyze.io platform for
comparing samples.

For exemple, here is the match of two SysJoker samples

(8 months of dev separate them)

https://exalyze.io/

Machoke - Demo
Demo: Finding Mélofée variants

Mélofée (TripleZero) is a malware family used by CN actors

https://blog.exatrack.com/melofee/ :
36161b6afed04c084470a703b3d8f50d

https://blog.xlab.qianxin.com/analysis_of_new_melofee_variant_
en/ : 603e38a59efcf6790f2b4593edb9faf5

Undetected variant:

22c49ea17617361b5323922c2252d42e

https://blog.exatrack.com/melofee/
https://blog.xlab.qianxin.com/analysis_of_new_melofee_variant_en/
https://blog.xlab.qianxin.com/analysis_of_new_melofee_variant_en/

Zubat

Cool! We can now compare tons of samples!

But we would like to compare each function with all
other functions stored inside a dataset, not just the
“sum” of functions for each binary.

This lead to the development of Zubat, an algorithm we
created to go deeper in malware tracking.

Zubat

After a function is disassembled and its CFG rebuilt,

we extract the main logic of it and built an intermediate
representation of this logic.

Representation must isolate “features” independent of
the global function logic.

Then we transform this profile into a fuzzy-hash string.

Zubat

Zubat

During our testing (on millions of functions) we could
even get matches between modified functions.

Here is a 74% match between 2 functions of 2 ZxShell
rootkits, the first is x86 and the second one is x64 ;)

Conclusion

• Code Similarity Analysis is complex but useful

• Using Machoke, we found some relations between
attacker’s codes and variants

• Code matching help a lot during reverse engineering

• To diff large datasets of malwares you also need to
integrate a lot of benign codes

Thank you
Thank you for your attention, any questions ?

Machoke similarity analysis (and more) is available on

https://exalyze.io

https://exalyze.io/

Similar algorithms

- MCRIT (https://github.com/danielplohmann/mcrit)

- Ghidra Bsim
(https://github.com/NationalSecurityAgency/ghidra/blob
/master/GhidraDocs/GhidraClass/BSim/README.md)

- https://github.com/googleprojectzero/functionsimsearch

- TLSH (https://documents.trendmicro.com/assets/wp/wp-
locality-sensitive-hash.pdf)

- Kesakode (https://doc.malcat.fr/analysis/kesakode.html)

https://github.com/danielplohmann/mcrit
https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraDocs/GhidraClass/BSim/README.md
https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraDocs/GhidraClass/BSim/README.md
https://github.com/googleprojectzero/functionsimsearch
https://documents.trendmicro.com/assets/wp/wp-locality-sensitive-hash.pdf
https://documents.trendmicro.com/assets/wp/wp-locality-sensitive-hash.pdf
https://doc.malcat.fr/analysis/kesakode.html

Who used Machoc?
- GData

- CarbonBlack

- Rapid7

- ANSSI

- Exatrack ;-)

- Probably more!

https://www.gdatasoftware.com/blog/2021/09/an-overview-of-malware-hashing-algorithms
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T2%20-%20fn_fuzzy%20-%20Fast%20Multiple%20Binary%20Diffing%20Triage%20-%20Takahiro%20Haruyama.pdf
https://www.rapid7.com/globalassets/_pdfs/2024-rapid7-ransomware-radar-report-final.pdf

	Section par défaut
	Diapositive 1

	Introduction
	Diapositive 2 Who are we?
	Diapositive 3
	Diapositive 4 Malware challenges
	Diapositive 5 “Karate Chop“

	What is Machoc?
	Diapositive 6 Machoc
	Diapositive 7 Machoc
	Diapositive 8 Machoc
	Diapositive 9 Machoc

	Evolving into Machoke
	Diapositive 10 Machoke
	Diapositive 11 Machoke
	Diapositive 12 Machoke
	Diapositive 13 Machoke – Func Counting
	Diapositive 14 Machoke – 3 steps
	Diapositive 15 Machoke - HeatMap
	Diapositive 16 Machoke
	Diapositive 17 Machoke
	Diapositive 18 Machoke
	Diapositive 19 Machoke
	Diapositive 20 Machoke - Demo
	Diapositive 21 Machoke - Demo

	A wild Zubat appears
	Diapositive 22 Zubat
	Diapositive 23 Zubat
	Diapositive 24 Zubat
	Diapositive 25 Zubat

	Conclusion
	Diapositive 26 Conclusion
	Diapositive 27 Thank you
	Diapositive 28 Similar algorithms
	Diapositive 29 Who used Machoc?

