
Automatically Classifying Unknown Bots
by The REGISTER Messages

Ya Liu

liuya@360.cn

Network Security Research Lab, Qihoo 360

Outline

• Polymorphism and malware classification

• C&C protocol based classification

• REGISTER message based classification

• Evaluation

• Pitfalls

• Conclusions

Polymorphic Malwares

 A great many of new samples are captured

every day

 Most of them are polymorphic variants of known

malwares

*Malware samples captured in Quarter 1 of 2015

[*] “2015 first quarter Chinese Internet Security Report”,

http://zt.360.cn/1101061855.php?dtid=1101062370&did=1101272883

Malware Classification

• The aim is to classify large number of samples into a
relative small number of families

– e.g., zbot, darkshell, gh0st, ...

• Static sample signatures are heavily used by anti-virus
products to build virus signature databases

– e.g., size, strings, binary code snippets

• It has FP/FN issues when dealing with modern
polymorphic malwares

C&C Protocol based Classification

• Most of modern malwares are distributed to
build botnets

• It’s proved effective to classify botnets
/malware based on their C&C protocols

– message types/formats/interactions are used

• Detailed C&C protocol specification is a pre-
condition

– Manual RE is necessary in most cases

• Scalability issue

The REGISTER Message

• The first message exchanged in a C&C session,
which MUST be sent by the bot

– It’s also called login, hello, call-home

• Its main usage is to tell the controller:

– the bot’s machine configs, e.g., OS version, CPU,
memory size, net speed

– hardcoded info copied from sample for verifying

• Many known botnets use this message in their
protocols

Common DDoS Bots’ REGISTERs

bot name
supported

OS

OS info
in

REGISTER?

CPU info
in

REGISTER

memory info
in

REGISTER

darkshell win yes yes yes

elknot linux/win yes yes yes

XOR DDoS linux yes yes no

chinaz linux/win yes yes yes

mayday linux yes yes no

dofloo linux/win yes yes yes

Elknot’s REGISTER

• This bot is also called Billgates

• It has variable length and binary format

struct register_msg {

 msg_hdr hdr;

 u8 conf[0x40];

 std::string description;

 u32 cpu_num;

 u32 cpu_spd;

 u32 mem_size;

 std::string os;

 std::string magic;

};

Dofloo’s REGISTER

• It’s also called Mr. Black

• It has text format of “VERSONEX:%s|%d|%d|%s”

– VERSONEX:Linux-3.11.0-12-generic|2|3576
MHz|2016MB|634MB|Hacker

– VERSONEX:Windows XP|1|3582|Mr.Black

– VERSONEX:Windows XP|1|3582
MHz|1024MB|245MB|Hacker

Shannon Entropy

• “Entropy is a measure of unpredictability of
information content. “

– From en.wikipedia.org

• Shannon entropy can be used to measure how
statistically similar 2 messages are

Sample REGISTER Statistics

Family name Length Entropy

Kelihos 164 4.6~4.8

XOR DDoS 272 3.22~3.29

mayday 401 0.4~0.6

elknot variable 2.5~2.8

Classification based on REGISTER

• Rich information included in REGISTER
messages

– length, entropy value, format, semantics fields

• A new classification that is based on the
similarities among REGISTERs in
statistics/structure

• It is scalable because the REGISTER message is
easy to get

Objectives

• To classify unlabeled samples based on their
REGISTER messages

– Simplify the sample analysis work

• What we really need to do is to find out the
number of REGISTER families, and generate
signatures for later identification

What We not do

• Will not tell you which cluster of REGISTERs are
malicious, and which are not

• Will not classify HTTP based REGISTERs

– Good solution exists

– there is so much classification info (e.g., method,
uri, headers) that we think it’s better to classify
them in a separate solution

The Architecture

REGISTER Profiling

• Creating REGISTERs from network traces

– Mainly parsing PCAP files

• Setting REGISTER attributes for later clustering
and signature generating

– Length, entropy, binary/text format, semantic
strings

Sample Profiles

{

 "bin":1,

 "length": 260,

 "entropy": 0.703393,

 "strings": [

 {

 "offset":4,

 "size":64,

 "content":"Windows XP",

 "semantics": ”os”

 },

 {

 "offset":68,

 "size":128,

 "content":"1 * 3187MHz",

 "semantics": “cpu”

 },

 {

 "offset":196,

 "size":32,

 "content":"128MB",

 "semantics": “memory”

 }

]

}

{

 “bin": 1,

 "length": 127,

 "entropy": 2.949660 ,

 "strings": [

 {

 "offset": 55,

 "size": 18,

 "content": "08:00:27:6D:C8:C5",

 "semantics": "mac"

 },

 {

 "offset": 73,

 "size": 14,

 "content": "Ubuntu 13.10 ",

 "semantics": "os"

 },

 {

 "offset": 87,

 "size": 40,

 "content": "Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz",

 "semantics": "cpu"

 }

]

}

Coarse-grained Clustering

• To group statistically similar REGISTERs

– k-means algorithm is used to cluster vectors of
<length, entropy>

• To reduce the computation cost

– A O(N2) computation cost is needed if we attempt
to directly find out structurally similar REGISTERs

Finding Semantic Strings

• A heuristic deduction procedure

– OS: “linux”, “Ubuntu 13.10”,”Win XP”

– Memory: “2016MB”, “2016 MB”

– CPU: “Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz”,
“MHz: 3576,3576”, “3582 MHz”

• Every semantic string has following attributes:

– semantics

– offset

– size

Length Field

• 3 types of semantics

– len_value=len3

– len_value=len2+len3

– len_value=len1+len2+len3

• Field size

– 32-bit/16-bit/8-bit

• Byte order

– Host-byte-order or network-byte-order

Fine-grained Clustering

• To find out structurally similar REGISTERs

• 2 REGISTERs are considered as structurally
similar if and only if:

1. Having similar entropy values

2. Sharing the same set of semantics strings and their
placing order

3. Sharing the same format of length field

4. Sharing the same encoding format

• binary or text

5. Having similar length

Sample Signatures

{

 "name":"L172O0S11T1448427268.607769",

 "ordinal":[0.5, 1.0],

 "type":"normal",

 "length":172,

 "entropy":3.48832,

 “patterns":

 [

 {"type":"rawbytes", "offset":0, "length":11, "content":"31 36 38 00 6C 6C 7C 27 7C 27 7C"}

]

}

{

 "name":"L126O4S16T1448427256.926312",

 "ordinal":[0.5, 1.0],

 "type":"normal",

 "length":126,

 "entropy":2.74977,

 “patterns":

 [

 {"type":"rawbytes", "offset":4, "length":16, "content":"76 65 72 73 69 6F 6E 00 00 00 00 00 66 00 00 00"}

]

}

Signature Generation

• For each group of structurally similar
REGISTERs a set of signatures are generated

• Generation steps includes:

1. Finding out frequent items of (offset, byte_value)

2. Merging offset continuing items

3. Normalizing them into valid signatures

• Some policies:

– AT_LEAST_OCCURS, default is 3

– AT_LEAST_SIG_BYTES, default is 4

– AT_LEAST_CONTINUOUS_SIG_BYTES, default is 1

Apriori/FP-Growth and Sig Bytes

• “Apriori is an algorithm for frequent item set
mining and association rule learning over
transactional databases.”

– From en.wikipedia.org

• Currently we use Apriori to find the frequent
items of (offset, byte_value) among REGISTERs

• We will update our solution to FP-Growth for
better performance

Signature Types

• Normal

– specific byte patterns exist at specified offsets

• PCRE :

– replacing semantic patterns with equivilant PCRE
expressions, e.g., “Windows\s.*”,

• Entropy:

– No valid patterns could be generated

– AND all REGISTERs have the same length and very
close entropy values

Evaluation

• Our system is implemented in C++ and
python

– About 2,500 lines of C++ code.

• It takes less than 30 minutes to classify 10K
REGISTERs

– Performed on a 4-core Intel(R) Core(TM) i7-4790
CPU @ 3.60GHz machine with 4GB of RAM

– Single thread

Choice of k

• k=20 is the best choice for k-means clustering
when doing coarse-grained clustering

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300 350 400 450

matched

False Negatives/ False Positives

Generated Signature: STUN

{

 "name":"L28O0S4O20S7T1447301150.241028",

 "ordinal":[0.5, 1.0],

 "sigtype":"normal",

 "length":28,

 "entropy":2.79622,

 "blocks":

 [

 {"type":"rawbytes", "offset":0, "length":4, "content":"00 01 00 08"},

 {"type":"rawbytes", "offset":20, "length":7, "content":"00 03 00 04 00 00 00"}

]

}

Generated Signature: SSL
{

 “name”:”L45O0S29T1447301147.172219”,

 “ordinal”:[0.5, 1.0],

 “type”:”normal”,

 “length”:45,

 “entropy”:2.93596,

 “blocks”:

 [

 {“type”:”rawbytes”, “offset”:0, “length”:29, “content”:”80 2B 01 00 02 00 12 00 00 00 10 01 00 80 07 00 C0 03 00 80 06 00

40 02 00 80 04 00 80”}

]

}

Generated Signature: Bladabindi
{

 "name":"L158O0S7O31S1O43S4O51S1O66S1O72S1O81S1O85S1O103S1O134S24T1447301149.680667",

 "ordinal":[0.5, 1.0],

 "type":"normal",

 "length":158,

 "entropy":3.3299,

 "blocks":

 [

 {"type":"rawbytes", "offset":0, "length":7, "content":"6C 76 7C 27 7C 27 7C"},

 {"type":"rawbytes", "offset":31, "length":1, "content":"7C"},

 {"type":"rawbytes", "offset":43, "length":4, "content":"42 4F 4F 4D"},

 {"type":"rawbytes", "offset":51, "length":1, "content":"7C"},

 {"type":"rawbytes", "offset":66, "length":1, "content":"7C"},

 {"type":"rawbytes", "offset":72, "length":1, "content":"30"},

 {"type":"rawbytes", "offset":81, "length":1, "content":"7C"},

 {"type":"rawbytes", "offset":85, "length":1, "content":"7C"},

 {"type":"rawbytes", "offset":103, "length":1, "content":"73"},

 {"type":"rawbytes", "offset":134, "length":24, "content":"7C 27 7C 27 7C 2E 2E 7C 27 7C 27 7C 7C 27 7C 27 7C 5B 65

6E 64 6F 66 5D"}

]

}

 Generated Signature: Nitol

{

 "name":"LXO1S18T1448629222.519142",

 "ordinal":[0.5, 1.0],

 "type":"normal",

 "entropy":1.2787,

 "blocks":

 [

 {"type":"rawbytes", "offset":1, "length":18, "content":"00 00 00 77 00 00 00 09 04 00 00 57 69 6E 20 58 50 20"}

]

}

Pitfalls

• REGISTER is not always used in C&C protocols

• For UDP based C&C protocol, it’s hard to tell
which message is REGISTER because of its
statelessness nature

• The same REGISTER may be shared across
different C&C protocols

• Our solution is not good at classifying
variable-length text format REGISTERs

Conclusions

• Statistical/structural similarities can be used to
effectively classify REGISTERs

• REGISTER based classification can
complement C&C protocol based classification

• Our solution is good at classifying binary
format REGISTERs with fixed lengths

Q&A

mailto:liuya@360.cn

