
© Fraunhofer FKIE

Behavior-Driven Development
in Malware Analysis

Thomas Barabosch, Elmar Gerhards-Padilla
firstname.lastname@fkie.fraunhofer.de

Botconf 2015, Paris, France

Cyber Analysis & Defense (CA&D)

© Cyber Defense Research Group, Fraunhofer FKIE

2

© Cyber Defense Research Group, Fraunhofer FKIE

3

Motivation

n Malware analysis continues to be a tedious and time consuming
task (some might call it job security…)

n Extraction of malicious behavior is a daily task

n  Analyze (obfuscated) binary code

n  Reimplement in higher language like Python or C (Reimplementation task)

n  Code is just “translated” from assembly to higher language

n  Functionality is not ensured

n  Readability is poor

n  No documentation

n  Underlying semantics not clear

Solution: Improve current process

© Cyber Defense Research Group, Fraunhofer FKIE

4

Related Work

n  Extraction of malicious behavior
n  [Caballero2010], [Kolbitsch2010], [Barabosch2012]

n  Using TDD in RE processes
n  [VanLindberg2008], [DeSousa2010]

However, current state-of-the-art solutions

n are not publicly available

n  can not cope with anti-analysis techniques

n  can not cope with complex obfuscations

n assume source code and documentation available

© Cyber Defense Research Group, Fraunhofer FKIE

5

Requirements of Solution

1.  Allows the analyst to describe concisely and naturally what
he observes

2.  Ensures that the code works continuously during the
implementation

3.  Resulting code should be concise, documented and
readable

4.  Increases the focus of the analyst

Proposed Solution:

Apply Behavior-Driven Development to Malware Analysis

© Cyber Defense Research Group, Fraunhofer FKIE

6

*-DRIVEN DEVELOPMENT

© Cyber Defense Research Group, Fraunhofer FKIE

7

In the Beginning there was Software Testing...

n  Tests whether a software does what it is supposed to do

n  Shows quality of a software to stake-holders

n  Finds defects and failures in a software

n  Problems

n  Infrequent testing (e.g. Waterfall model)

n Code coverage

n Not efficient if done manually

© Cyber Defense Research Group, Fraunhofer FKIE

8

Test Driven Development (TDD)

Source: http://luizricardo.org/wordpress/wp-content/upload-
files/2014/05/tdd_flow.gif

n  Short development cycle

n  Ideally ensures 100% coverage

n  Small and comprehensive code
base due to frequent refactoring

n  Tests serve as a documentation of
the code

© Cyber Defense Research Group, Fraunhofer FKIE

9

Behavior Driven Development (BDD)

n  BDD focuses on a clear understanding of the
software’s behavior rather than modules,
functions, etc.

n  BDD emerged from TDD

n  Test cases are formulated in natural language

n  Strong theoretical foundation (Hoare logic)

n {P} C {Q} -> Given _ When _ Then _

© Cyber Defense Research Group, Fraunhofer FKIE

10

Behavior Driven Development (BDD)

Scenario: Coffee maker can add sugar to coffee

Given customer chooses sugar

When customer presses OK button

Then coffee maker adds sugar to coffee

© Cyber Defense Research Group, Fraunhofer FKIE

11

BDD IN MALWARE ANALYSIS

© Cyber Defense Research Group, Fraunhofer FKIE

12

Overview of the Process

Observe

Test

Code

Refactor

n Preparation phase

n Implementation phase (Observe – Test – Code – Refactor)

© Cyber Defense Research Group, Fraunhofer FKIE

13

Preparation - Pinpointing the Behavior

n  First pinpoint the behavior in the binary

n  Find entry point S and exits {E1, …, En}

n  Extract initial test data for acceptance test

n  State acceptance test

Source: https://trak-1.com/wp-content/uploads/2014/10/haystack.jpg

© Cyber Defense Research Group, Fraunhofer FKIE

14

Pinpointing the Behavior (DGA)

n Domain Generation Algorithm
n  See Daniel’s talk (DGArchive – A deep dive into domain generating malware)

n Several types of DGAs [Barabosch2012]

n  Deterministic/non-deterministic

n  Time-dependent/independent

n Naïve approach (forwards): look for timing sources

n  E.g. GetSystemTime, NtQuerySystemTime, GetLocalTime

n Naïve approach (backwards): DNS resolution

n  E.g. gethostbyname

© Cyber Defense Research Group, Fraunhofer FKIE

15

Pinpointing the Behavior (command dispatcher)

n Bots implement several
commands

n Bots receive and process
messages of botmaster

n  Command dispatcher

n Naïve approach: follow data
flow from network source

n  Monitor networking APIs like
receive

n  Follow data flow in forwards
direction until switch statement

switch (17)

case 1

case 2

case 3

case 4

case 5

case 6

case 7

Example: Dridex

© Cyber Defense Research Group, Fraunhofer FKIE

16

Preparation - Initial End-To-End Acceptance Test

n  Serves as guide throughout the implementation phase

n  Tests behavior as a black box

n  Capture data at S and {E1, …, En}

n  Once this test passes -> reimplementation successfully

© Cyber Defense Research Group, Fraunhofer FKIE

17

Step 1: Observing the Behavior

n  Top-Down-Approach

n  Getting a rough overview

n  Identifying individual features and their interfaces

n  Gather test data at interfaces (input/output)

n  Use this data for mocking later

n  Mock interfaces of submodules at first

Observe

Test

Code

Refactor

© Cyber Defense Research Group, Fraunhofer FKIE

18

Step 2: Writing a Test

n  Given-Then-When

n  Fundamental: mock objects

n Mimic the behavior of real objects

n  In software development, they
replace, e.g., non-existing objects

n  In our case, they replace modules
that are not 100% understood

n Gather test data at module interfaces

Observe

Test

Code

Refactor

© Cyber Defense Research Group, Fraunhofer FKIE

19

Step 2: Writing a Test

n  Given-Then-When

n  Fundamental: mock objects

n Mimic the behavior of real objects

n  In software development, they
replace, e.g., non-existing objects

n  In our case, they replace modules
that are not 100% understood

n Gather test data at module interfaces

Observe

Test

Code

Refactor

Main

Init Deinit AMain

A1 A2

© Cyber Defense Research Group, Fraunhofer FKIE

20

Step 2: Writing a Test

n  Given-Then-When

n  Fundamental: mock objects

n Mimic the behavior of real objects

n  In software development, they
replace, e.g., non-existing objects

n  In our case, they replace modules
that are not 100% understood

n Gather test data at module interfaces

Observe

Test

Code

Refactor

Main

Init Deinit AMain

A1 A2

© Cyber Defense Research Group, Fraunhofer FKIE

21

Step 3: Making the Test Pass

n  Just write enough code to make the test pass

n  Binary serves as valid system specification

n  Focus and just implement code to make the test pass

n  “Premature optimization is the root of all evil”

Observe

Test

Code

Refactor

© Cyber Defense Research Group, Fraunhofer FKIE

22

Step 4: Refactoring the Code

n  Altering the syntax without altering the semantics

n  Ensures conciseness and readability

n  Many refactorings do exist (see also [Fowler1999])

n Refactoring inlined code (memcpy)

n Break up complex expressions

n Removing dead expressions

n  Does the end-to-end acceptance test pass?

Observe

Test

Code

Refactor

© Cyber Defense Research Group, Fraunhofer FKIE

23

Limitations

n  Decrease in time efficiency

n  Extra time pays off due to benefits

n  TDD comes with an overhead of 15% to 35% [Bhat2006]

n  TDD/BDD comes from “normal” software development

n  Reusability not needed in malware analysis

n  Long-running projects do exist also in the field of
malware analysis

© Cyber Defense Research Group, Fraunhofer FKIE

24

CASE STUDY NYMAIM DGA

© Cyber Defense Research Group, Fraunhofer FKIE

25

Nymaim

n  Nymaim is a malware dropper

n  But also credential stealer, SOCKS, etc.

n  Heavily obfuscated

n  Decompilers fail to work

n  See IDApatchwork presentation of Daniel Plohmann

© Cyber Defense Research Group, Fraunhofer FKIE

26

n  Unpacked Dridex

n  Regular functions

n  No strange constants

n  Resolved imports

n  Reasonable control
flow

n  …

© Cyber Defense Research Group, Fraunhofer FKIE

27

n  Unpacked Nymaim

n  Irregular functions

n  Function entries

n  Function ends

© Cyber Defense Research Group, Fraunhofer FKIE

28

n  Unpacked Nymaim

n  Irregular functions

n  Function entries

n  Function ends

n  Strange constants

© Cyber Defense Research Group, Fraunhofer FKIE

29

n  Unpacked Nymaim

n  Irregular functions

n  Function entries

n  Function ends

n  Strange constants

n  Control flow computed
dynamically

© Cyber Defense Research Group, Fraunhofer FKIE

30

n  Unpacked Nymaim

n  Irregular functions

n  Function entries

n  Function ends

n  Strange constants

n  Control flow computed
dynamically

n  Confuses disassembler

© Cyber Defense Research Group, Fraunhofer FKIE

31

Nymaim‘s DGA – Tools of Trade and Resources

n  Tools of trade

n  Immunity Debugger 1.85

n  IDA Pro 6.8

n  Mandiant ApateDNS 1.0

n  Python 2.7.9

n  Behave 1.2.5 [Behave2015]

n  Source code on Bitbucket!
n  https://bitbucket.org/tbarabosch/botconf-2015-bdd-in-mw-analysis

© Cyber Defense Research Group, Fraunhofer FKIE

32

Nymaim‘s DGA – First Observations

n  Black-boxing shows that

n At first four hard-coded domain are resolved
and contacted

© Cyber Defense Research Group, Fraunhofer FKIE

33

Nymaim‘s DGA – First Observations

n  Black-boxing shows that

n At first four hard-coded domain are
resolved and contacted

n  In case of failure domains are generated
and resolved

n Deterministic: same results in two
different VMs

n Time-dependent: different results when
date changed

© Cyber Defense Research Group, Fraunhofer FKIE

34

Nymaim‘s DGA – First Observations

n  Black-boxing shows that

n At first four hard-coded domain are
resolved and contacted

n  In case of failure domains are generated
and resolved

n Deterministic: same results in two
different VMs

n Time-dependent: different results when
date changed

n Pinpointing the algorithm

n Breaking on GetSystemTime -> Bingo!

n  Input: time

n Output: 30 domain names

© Cyber Defense Research Group, Fraunhofer FKIE

35

Nymaim‘s DGA – Our First Test: Acceptance Test

n  We know already many important parameters

n  Interfaces of algorithm

n  Also we have gathered a first set of test data

n  Time information and list of generated domains

n  We write our first end-to-end acceptance test

n  It does not pass

n  However, once it passes we are done!

© Cyber Defense Research Group, Fraunhofer FKIE

36

Nymaim‘s DGA – Our First Test: Acceptance Test

© Cyber Defense Research Group, Fraunhofer FKIE

37

Nymaim‘s DGA – Our First Test: Acceptance Test

© Cyber Defense Research Group, Fraunhofer FKIE

38

Nymaim‘s DGA – Our First Test: Acceptance Test

© Cyber Defense Research Group, Fraunhofer FKIE

39

Nymaim‘s DGA – Overview

n  While stepping over the code we have noticed
that there

n  Initialization

n  Main logic

n  PRNG (Xorshift)

n  We focus on one component at a time

n  Reverse the main logic, mock the rest!

© Cyber Defense Research Group, Fraunhofer FKIE

40

Nymaim‘s DGA – Main Logic

© Cyber Defense Research Group, Fraunhofer FKIE

41

Nymaim‘s DGA – Main Logic

© Cyber Defense Research Group, Fraunhofer FKIE

42

Nymaim‘s DGA – Main Logic

© Cyber Defense Research Group, Fraunhofer FKIE

43

Nymaim‘s DGA – Main Logic

n  Test only the main logic, e.g. choose TLD

n  Mock the rest!

n  Might require several scenarios

© Cyber Defense Research Group, Fraunhofer FKIE

44

Nymaim‘s DGA – Main Logic

n  Test only the main logic, e.g. choose TLD

n  Mock the rest!

n  Might require several scenarios

© Cyber Defense Research Group, Fraunhofer FKIE

45

Nymaim‘s DGA – PRNG (Xorshift)

n  Next, we have a look at the PRNG (Xorshift)

n  Still we do not want to deal with the seeds

n  Input: five integers (4* seed + modulo)

n  Output: integer [0, modulo - 1]

n  Has side effects on the seeds !

© Cyber Defense Research Group, Fraunhofer FKIE

46

Nymaim‘s DGA – PRNG (Xorshift)

© Cyber Defense Research Group, Fraunhofer FKIE

47

Nymaim‘s DGA – PRNG (Xorshift)

© Cyber Defense Research Group, Fraunhofer FKIE

48

Nymaim‘s DGA – PRNG (Xorshift)

© Cyber Defense Research Group, Fraunhofer FKIE

49

Nymaim‘s DGA – Results

© Cyber Defense Research Group, Fraunhofer FKIE

50

Nymaim‘s DGA – Results

© Cyber Defense Research Group, Fraunhofer FKIE

51

Nymaim‘s DGA – Results

n  Five tests of DGA’s features

n  One end-to-end acceptance test

© Cyber Defense Research Group, Fraunhofer FKIE

52

Nymaim‘s DGA – Results

n  Five tests of DGA’s features

n  One end-to-end acceptance test

n  Readable code

n  One class implementing the main logic

n  One class implementing the PRNG (strategy pattern)

n  One class serving as data structure

© Cyber Defense Research Group, Fraunhofer FKIE

53

CONCLUSION & FUTURE WORK

© Cyber Defense Research Group, Fraunhofer FKIE

54

Conclusion & Future Work

n  BDD in malware analysis

n  Case Study Nymaim

n  Check source code on Bitbucket!

n  https://bitbucket.org/tbarabosch/botconf-2015-bdd-in-mw-analysis

n  Future work

n  Automatic test case generation

n  Tools for gathering test data in RE context

© Cyber Defense Research Group, Fraunhofer FKIE

55

