

# Improve DDoS Botnet Tracking with Honeypots

#### Ya Liu

Network Security Research Lab, Qihoo 360



# Agenda



- About DDoS botnet tracking
- DDoS botnet families and their PGAs (Packet Generation Algorithm)
- Backscatter collection and analysis
- PGA analysis
- Experiments

#### **DDoS botnet tracking**



- It's aimed to learn botnet assisted DDoS attacks
  - 4w: who is being attacked by what botnet families under which C2 controllers with what set of attacking parameters (e.g., attack type)

| 2016/11/23 15:15:07 | mirai  | securityupdates.us                       | 5.188.232.103 | 23   | ddos tcp    | _ack_flo | od, target | =109.163.22 | 4.34, mask_k | bits=32, at} | c_time=60, pay | load_size=1 |
|---------------------|--------|------------------------------------------|---------------|------|-------------|----------|------------|-------------|--------------|--------------|----------------|-------------|
| 2016/11/23 15:15:08 | mirai  | timeserver.host 188.209                  | .49.106 23    | ddos | tcp_ack_flo | od, targ | et=109.163 | .224.34, ma | sk_bits=32,  | atk_time=60  | ), payload_siz | e=1         |
| 2016/11/23 15:50:27 | mirai  | cnc.routersinthis.com                    | 93.158.212.81 | 23   | ddos udp    | flood,   | target=217 | .68.245.94, | mask_bits=3  | 32, port=80, | atk_time=100   | , port=80   |
| 2016/11/23 15:50:27 | mirai  | ftp.xenonbooter.xyz                      | 93.158.212.81 | 23   | ddos udp    | flood,   | target=217 | .68.245.94, | mask bits=3  | 32, port=80, | atk_time=100   | , port=80   |
| 2016/11/23 17:18:10 | mirai  | cnc.routersinthis.com                    | 93.158.212.81 | 23   | ddos udp    | flood,   | target=82. | 144.163.26, | mask bits=3  | 32, port=80, | atk time=100   | , port=80   |
| 2016/11/23 17:18:10 | mirai  | ftp.xenonbooter.xyz                      | 93.158.212.81 | 23   | ddos udp    | flood,   | target=82. | 144.163.26, | mask bits=:  | 32, port=80, | atk_time=100   | , port=80   |
| 2016/11/23 17:26:37 | mirai  | cnc.routersinthis.com                    | 93.158.212.81 | 23   | ddos udp    | flood,   | target=94. | 14.175.22,  | mask_bits=32 | 2, port=80,  | atk_time=100,  | port=80     |
| 2016/11/23 17:26:37 | mirai  | ftp.xenonbooter.xyz                      | 93.158.212.81 | 23   | ddos udp    | flood,   | target=94. | 14.175.22,  | mask_bits=32 | 2, port=80,  | atk_time=100,  | port=80     |
| 2016/11/23 17:51:30 | mirai  | cnc.routersinthis.com                    | 93.158.212.81 | 23   | ddos udp    | flood,   | target=90. | 221.219.57, | mask bits=3  | 32, port=80, | atk_time=100   | , port=80   |
| 2016/11/23 17:51:30 | mirai  | ftp.xenonbooter.xyz                      | 93.158.212.81 | 23   | ddos udp    | flood,   | target=90. | 221.219.57, | mask bits=3  | 32, port=80, | atk_time=100   | , port=80   |
|                     |        |                                          |               |      |             |          |            |             |              |              |                |             |
| γ                   | $\neg$ |                                          |               |      |             |          |            |             |              | γ            |                |             |
|                     |        | 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 |               |      |             |          |            |             |              | 1            |                |             |
| Constant            | fomily |                                          |               |      |             |          | _          | - 11        | L. Commune ( | 0            |                |             |
| time                | family | C2 domain                                | C2 IP/po      | rt   | commar      | ια τγρε  | Э          | attac       | k target     | & parar      | neters         |             |
|                     |        |                                          |               |      |             |          |            |             | 0            |              |                |             |

# Stats on our tracking



- Our tracking started in 2014
- 30+ botnet families
- 6,000+ successfully tracked botnets
- 800+ million received attack commands
- 250K+ checked attack targets
- Our data has been shared many times with colleagues outside of our company

#### How to evaluate it?



- For evaluation purpose, we need to know:
  - what *family-unknown* botnets are active in the wild?
  - what *family-known* C2 controllers are outside of our tracking list?

 Therefore we need information about the real attacks, and a method to connect them to the used botnet families

#### **DDoS** backscatter



- It's generated due to the use of spoofed source IPs in attacking packets
  - e.g., TCP SYN-ACKs acknowledged to spoofed SYNs

• It's known as a cause of dark space traffic in parallel with scanning and network misconfigurations

 Solutions to detect & monitor DDoS attacks based on backscatters have been proposed in the past years

# Darknet? Or honeypot?

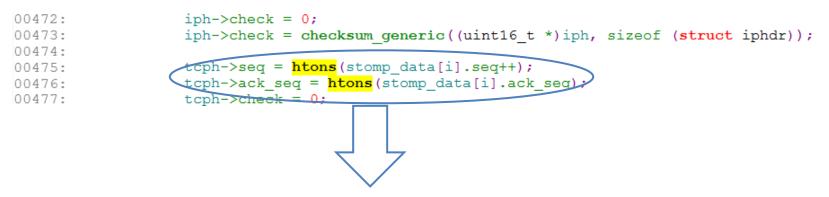


|          | Pros.                                                                                                                    | Cons.                  |
|----------|--------------------------------------------------------------------------------------------------------------------------|------------------------|
| Darknet  | <ul> <li>Collect a large</li> <li>number of packets</li> <li>destined to a block of</li> <li>unused addresses</li> </ul> | Non-trivial deployment |
| Honeypot | <ul><li>Cost effective</li><li>Easy to deploy</li></ul>                                                                  | Less packets collected |

#### Our scheme



• Full traffic captures are taken on our dozens of low-interaction honeypots


- A special mechanism is designed to separate the *wanted* traffic from the *unwanted*
  - *wanted*: traffic generated by honeypot applications
  - unwanted: scans, backscatters, etc.

# PGA: Packet Generation Algorithm (S) 360

- In modern botnets, attacking packets are usually generated by the bots according some specific algorithm which we call PGA
- PGA attributes:
  - It's attack type specific
  - It's usually family specific
  - Fixed patterns usually exist in the generated packets
- Botnet families can by identified by PGA signatures

# MIRAI's PGA for stomp attack

#### [\*] copied from attack\_tcp\_stomp() of attack\_tcp.c

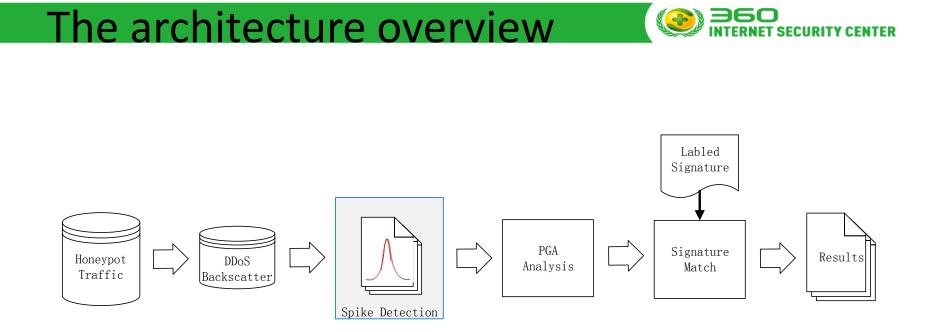


fixed "0x0000" can be found in tcph->seq and tcph->ack\_seq

# MIRAI'S PGA for gre\_eth attack Internet Security CENTER

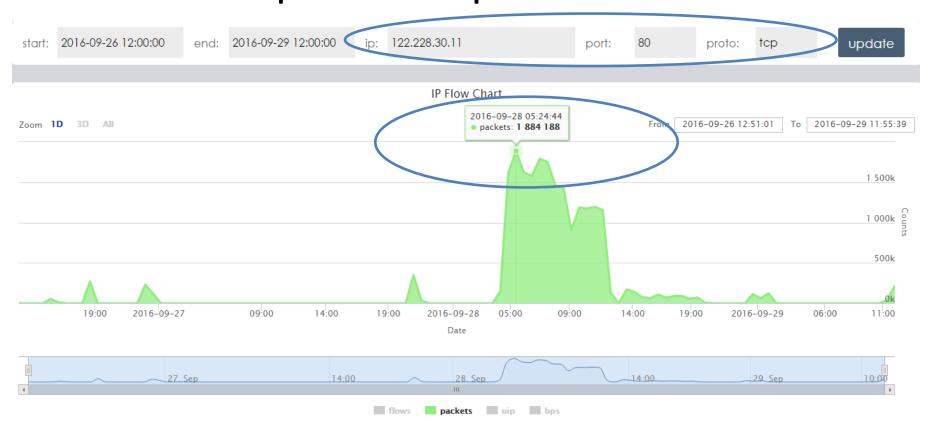
#### [\*]copied from attack\_gre\_eth () in attack\_gre.c

```
if (ip ident == 0xffff)
00271:
00272:
                       iph->id = rand next() & 0xffff;
00273:
                       greiph->id = ~(iph->id - 1000);
00274:
00275:
00276:
                   if (sport == 0xffff)
                       udph->source = rand next()
                                                       Efff;
00277:
00278:
                   if (dport == 0xffff)
                       udph->dest = rand nex
00279:
                                             greiph->id is bound to iph->id
00280:
00281:
                   if (!gcip)
                       greiph->daddr = rand meanur,
00282:
00283:
                   else
                       greiph->daddr = iph->daddr;
00284:
```


greiph->daddr is bound to iph->addr

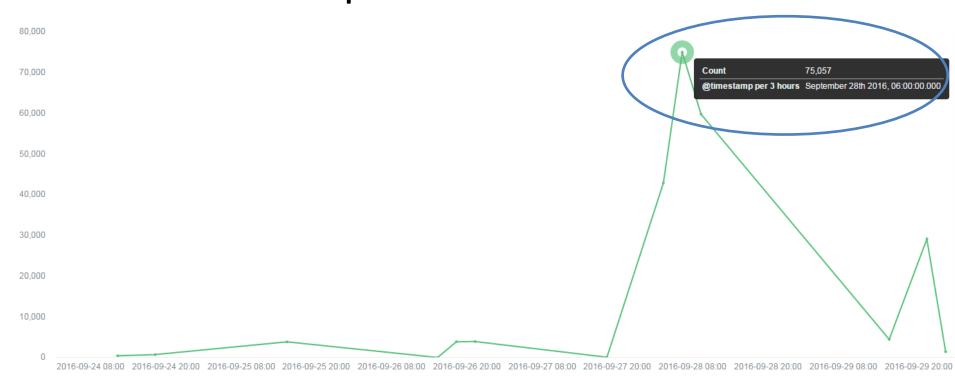
#### From packets to bot families

• Buggy implementation and design flaws lead to PGA signatures which can be characterized by their packets


 PGA signatures can also be concluded by reverse engineering the bot sample

• It's possible to correlate an DDoS attack to the used botnet families by PGA signature matching




# A TCP-SYN spike example





# The reflected spike





#### Our spike detection scheme



- Backscatters are sub-grouped based on:
  - {packet type, source IP, source port}
  - or {packet type, queried domain} in case DNS responses

| Policy name               | Description                                                                         |  |  |  |
|---------------------------|-------------------------------------------------------------------------------------|--|--|--|
| PACKET_TIME_INTERVAL      | If 2 packets' interval is less than this value, they are grouped to the same spike. |  |  |  |
| LEAST_NUMBER_OF_PACKETS   | The least number of packets a valid spike MUST have.                                |  |  |  |
| LEAST_NUMBER_OF_HONEYPOTS | The least number of honeypots a valid spike MUST hit.                               |  |  |  |

### **3** supported backscatters



• TCP SYN-ACK packets for detecting SYN flood

• DNS response packets for detecting query flood

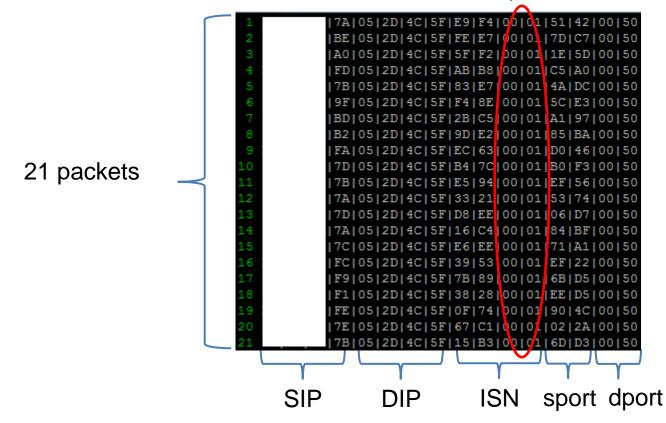
• ICMP unreachable messages

– ICMP type=3, code=3

The original attacking packets could be restored

# Restoring attacking pkt fields

| Backscatter type         | Restored attacking packet fields                                                                                               |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| TCP SYN-ACK              | <ul><li>source/destination IP/port</li><li>initial sequence number</li></ul>                                                   |  |  |  |
| DNS response             | <ul> <li>source/destination IP</li> <li>source port</li> <li>transaction ID (tid for short)</li> <li>queried domain</li> </ul> |  |  |  |
| ICMP unreachable message | <ul> <li>sip/dip/sport/dport/ISN for SYN</li> <li>sip/dip/sport/tid for DNS query</li> </ul>                                   |  |  |  |

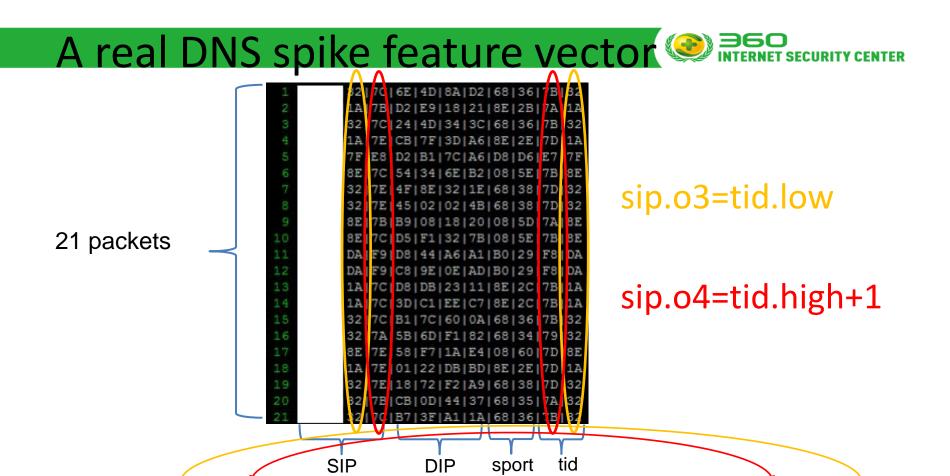

# Packet feature vector & matrix (\*\*\*) TERNET SECURITY CENTER

- They are defined to find the fixed patterns in attacking packets
  - And to calculate the spike feature vector
- The vector is constructed by restored field bytes
  - A 16-dimension vector for SYN packet
    - {sip, dip, ISN, sport, dport}
  - A 12-dimension vector for DNS query packet
    - {sip, dip, sport, transaction-id}

#### A real SYN packet feature matrix



#### fixed patterns




### Spike feature vector



 It's used to find the bound relations among attacking packet fields, and to do spike clustering

 It's obtained by calculating the Shannon Entropy of each column of packet feature matrix



{e1=1.52, e2=1.52, e3=1.52, e4=1.87, e5=4.16, e6=4.65, e7=4.60, e8=4.60, e9=1.52, e10=2.81, e11=1.87, e12=1.52}

# Spike clustering & PGA profiling

• Spike clustering is to find the similar spikes that are probably generated by the same family

- PGA is profiled in 2 ways:
  - fixed patterns are detected by checking element of 0.0
  - bounds are detected by checking the same elements

• The profiling result is used for signature matching

### About the bound relation



• One field is derived from another one:

field\_n = f(field\_m)

• While the simplest bound relation is simple byte sharing, the real situation is complicated

• Our approach only detects the bound relations, with the exact relations left for manual analysis



 If a detected spike is not successfully correlated, it means there are family unknown botnets in the wild

 If a spike is successfully correlated, we just check our tracking list to see whether the attack has been tracked or not

#### Experiments



- 2,333 SYN-ACK spikes and 1,835 DNS spikes are checked
  - from August, 2015 to October, 2016
- 4 large PGA clusters are found

| Cluster  | PGA signatures                                                             | Spikes | Botnet family |
|----------|----------------------------------------------------------------------------|--------|---------------|
| sa_cls1  | {(p <sub>9</sub> =p <sub>13</sub> ), (p <sub>10</sub> =p <sub>14</sub> )}  | 1318   | XOR.DDoS      |
| sa_cls2  | {(p <sub>13</sub> =0x00), (p <sub>14</sub> =0x01)}                         | 131    | unknown       |
| dns_cls1 | {(p <sub>4</sub> =p <sub>11</sub> +1), (p <sub>3</sub> =p <sub>12</sub> )} | 626    | unknown       |
| dns_cls2 | {(p <sub>3</sub> =p <sub>9</sub> ), (p <sub>4</sub> =p <sub>10</sub> )}    | 21     | unknown       |

### About dns\_cls1



 It can be connected to a family-unknown attack tool which supports DNS random subdomain attack

2015-11-20 13:04:04 resolver=125.132.239.21, sport=36395, tid=31258, qname=olslix.quanshuwu.com 2015-11-20 13:20:10 resolver=85.46.222.186, sport=2144, tid=32142, qname=irozuz.quanshuwu.com 2015-11-20 13:32:41 resolver=118.125.92.160, sport=2141, tid=31374, qname=wxctwb.quanshuwu.com 2015-11-20 13:36:47 resolver=82.101.215.69, sport=2142, tid=31630, qname=ahwdozqhqbujyx.quanshuwu.com 2015-11-20 13:36:51 resolver=190.0.1.171, sport=30766, tid=32026, qname=ibwnexgnwxurcd.quanshuwu.com 2015-11-20 13:38:42 resolver=31.165.247.192, sport=26680, tid=32050, qname=fydrgrw.quanshuwu.com 2015-11-20 13:47:12 resolver=94.232.149.33, sport=2144, tid=32142, qname=mlmfyzav.quanshuwu.com 2015-11-20 13:51:27 resolver=182.255.72.235, sport=26678, tid=31538, qname=qzgngvcncfkbczwn.quanshuwu.com

- It shares the same subdomain pattern with Elknot/BillGates, but has different PGA signature
- It's still active, and mainly used to attack China onlinegame domains

#### Conclusions



• A backscatter collection scheme with honeypots

 A spike based attack detection scheme from DDoS backscatters

 A PGA analysis approach based on recovered attacking packet fields



# Q&A liuya@360.cn