
Alberto Ortega

Nymaim Origins, Revival and Reversing Tales

Who am I?

Real-time contextual threat intelligence

Alberto Ortega
Threat Analyst at Fox-IT
Reverse engineering
@a0rtega

http://aortega.badtrace.com/

http://aortega.badtrace.com/

Agenda

Real-time contextual threat intelligence

• Nymaim in the past
• Nymaim currently
• Anti-analysis techniques

• Anti-VM / Anti-Sandbox
• Anti Process dumping
• Code obfuscation
• Campaign timer

• Static configuration overview
• Network traffic encryption
• DNS resolution
• DGA
• Banking fraud configuration

Real-time contextual threat intelligence

Nymaim is a malware family discovered around late 2013.

It was mainly used to lock computers and drop ransomware in the
infected machines.

It got some attention at the time because it was highly obfuscated.

Nymaim in the past

Real-time contextual threat intelligence

Nymaim currently

Gozi ISFB source code was leaked in 2015.

We began to see Nymaim samples being used as droppers which
would download Gozi ISFB into a DLL and run it as a module.

At that time Gozi ISFB code was still easily recognizable.

Not too long after this, they ran the binaries or source code through
the same obfuscation tool / compiler that Nymaim uses.

Real-time contextual threat intelligence

Anti-analysis techniques

 Strings decryption on-demand
 Anti virtual machine, sandbox, …
 Anti process dumping
 Campaign timer
 Code obfuscation
 DGA
 Network traffic encryption

Real-time contextual threat intelligence

Anti-VM / Anti-Sandbox

#*SMCI#* Super Micro?
#*76487-337-8429955-22614#*
SystemBiosVersion
#*VBOX#*
#*55274-640-2673064-23950#*
VideoBiosVersion
#*FTNT-1#* Fortinet?
#*SONI#* Sonicwall?
#*BOCHS#*
#*AMI#* American Megatrends?
#*xeon#* Intel Xeon
#*VirtualBox#*
#*76487-644-3177037-23510#*
\Registry\Machine\Hardware\DESCRIPTION\System\CentralProcessor
#*QEMU#*
ProcessorNameString
#*INTEL - 6040000#* VMware artifact

Real-time contextual threat intelligence

Anti Process dumping

Real-time contextual threat intelligence

Code obfuscation

Real-time contextual threat intelligence

Code obfuscation

The function craft_call dynamically calculates the return address,
based on an operation with the two hard-coded parameters.

It's actually a call to another procedure.

There are variations of craft_call spread all over the disassembly,
with different operations (add, xor, sub).

Many other anti-disassembly techniques are present, but this is
probably the most characteristic and annoying :)

Real-time contextual threat intelligence

Campaign timer

Real-time contextual threat intelligence

Campaign timer

20/Nov/2016

Real-time contextual threat intelligence

Campaign timer

Some samples have a maximum campaign date embedded in the
configuration.

After this day, the loader won't run anymore.

Measure intended to avoid automated analysis of old samples.

Usually the campaign time frame is very short (just a few days).

Real-time contextual threat intelligence

Static configuration overview

Real-time contextual threat intelligence

Static configuration overview

 Fake MessageBox text when opening the loader
 RC4 key for CnC communication encryption
 RSA key
 CnC domains and URI (if hard-coded domain)
 DGA seed (if DGA)
 DNS servers to use
 Campaign timer (if any)
 Other runtime options

Real-time contextual threat intelligence

Network traffic encryption

First layer of encryption is always RC4 with the static key and a
variable salt for each request / response.

Important messages like the banking module download or the web
injects config have more encryption layers.

Network protocol was thoroughly documented in the following
presentation: http://lokalhost.pl/talks/vb2016/#36

http://lokalhost.pl/talks/vb2016/#36

Real-time contextual threat intelligence

DNS resolution

Nymaim resolves domains using its own homemade algorithm.

They implemented a checksum to verify the resolved domains are
actually managed by them.

DNS A records returned in the resolution are not the actual IP
addresses, they are mutated and used.

Google DNS servers are used.

Real-time contextual threat intelligence

DNS resolution

alberto:~/ $ host cweazk.com
cweazk.com has address 123.183.122.108
cweazk.com has address 29.127.141.43
cweazk.com has address 77.171.243.136
cweazk.com has address 21.53.255.102
alberto:~/ $

alberto:nymaim/ $./dns_to_ip.py cweazk.com
5.149.106.51
107.151.241.49
13.95.146.117
alberto:~/ $

Real-time contextual threat intelligence

DNS resolution

def deriv(value):
 iterations = 0x5B84CAD6 ^ 0x5B84CAC6
 for _ in range(iterations):
 eax = 0x399DE9E5
 ebx = 0x5B84CAC6
 eax ^= ebx
 value ^= eax
 eax = 0x18AC5FC7
 ebx = 0x5B84CAC6
 eax ^= ebx
 value = (value - eax) & 0xFFFFFFFF
 eax = 0x78C1AC4F
 ebx = 0x5B84CAC6
 eax ^= ebx
 value ^= eax
 return value

Real-time contextual threat intelligence

DNS resolution

Checksum validation:

deriv(ip_addr1) + deriv(ip_addr2) + deriv(ip_addr3) = deriv(ip_addr4)

If the checksum passes, the IP value used for validation is discarded
and the others are used.

Real-time contextual threat intelligence

DGA

Based on 726238de74f2a2143fd09cc86e413130

DGA uses a PRNG based on the Xorshift algorithm. It's initially seeded
with the current system time and a fixed seed.

DGA is actually a 2-steps DGA …

dga = initialize_dga1(seed=0xF536C78E);
domains = dga.generate_domains(15)
for domain in domains:

ips = resolv(domain)
if ips: break

dga2 = initialize_dga2(seed1 = ips[0], seed2 = ips[1])
domains = dga2.generate_domains(15)
for domain in domains:

ips = resolv(domain)
cncs = derivation_and_checksum(ips)
if cncs: connect_cnc(cncs)

Real-time contextual threat intelligence

DGA

Detected backend RC4 keys ↔ DGA seed groups:

x1&jxJ3Xf8[327)47&327H

0x6078b970

c1&sjdJxdj3nHd[g5&Gs1

0xd7fb9c63
0x74ccdcf4
0xf536c78e
0x44068a51

RC4 key

DGA seeds

RSA key is consistent among all detected samples.

01010111011
00011101000
10110001101
10100010110

01011101

$
$ $

Real-time contextual threat intelligence

Banking fraud configuration

It uses exactly the same binary format as Gozi ISFB.

Their configurations make much use of redirects to their injects panel,
instead of embedding the malicious code in to the deployed
configuration.

Injects panel

$
$

$$

Real-time contextual threat intelligence

Banking fraud configuration

US campaign config snippet:

Real-time contextual threat intelligence

Banking fraud configuration

US campaign config snippet:

Thank you!

Real-time contextual threat intelligence

